Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bcxmaslem1 | Structured version Visualization version GIF version |
Description: Lemma for bcxmas 15238. (Contributed by Paul Chapman, 18-May-2007.) |
Ref | Expression |
---|---|
bcxmaslem1 | ⊢ (𝐴 = 𝐵 → ((𝑁 + 𝐴)C𝐴) = ((𝑁 + 𝐵)C𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7158 | . 2 ⊢ (𝐴 = 𝐵 → (𝑁 + 𝐴) = (𝑁 + 𝐵)) | |
2 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
3 | 1, 2 | oveq12d 7168 | 1 ⊢ (𝐴 = 𝐵 → ((𝑁 + 𝐴)C𝐴) = ((𝑁 + 𝐵)C𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 (class class class)co 7150 + caddc 10578 Ccbc 13712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-un 3863 df-in 3865 df-ss 3875 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-iota 6294 df-fv 6343 df-ov 7153 |
This theorem is referenced by: bcxmas 15238 sylow1lem1 18790 |
Copyright terms: Public domain | W3C validator |