MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcxmaslem1 Structured version   Visualization version   GIF version

Theorem bcxmaslem1 15882
Description: Lemma for bcxmas 15883. (Contributed by Paul Chapman, 18-May-2007.)
Assertion
Ref Expression
bcxmaslem1 (𝐴 = 𝐵 → ((𝑁 + 𝐴)C𝐴) = ((𝑁 + 𝐵)C𝐵))

Proof of Theorem bcxmaslem1
StepHypRef Expression
1 oveq2 7456 . 2 (𝐴 = 𝐵 → (𝑁 + 𝐴) = (𝑁 + 𝐵))
2 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
31, 2oveq12d 7466 1 (𝐴 = 𝐵 → ((𝑁 + 𝐴)C𝐴) = ((𝑁 + 𝐵)C𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  (class class class)co 7448   + caddc 11187  Ccbc 14351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451
This theorem is referenced by:  bcxmas  15883  sylow1lem1  19640
  Copyright terms: Public domain W3C validator