MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcxmaslem1 Structured version   Visualization version   GIF version

Theorem bcxmaslem1 15726
Description: Lemma for bcxmas 15727. (Contributed by Paul Chapman, 18-May-2007.)
Assertion
Ref Expression
bcxmaslem1 (𝐴 = 𝐵 → ((𝑁 + 𝐴)C𝐴) = ((𝑁 + 𝐵)C𝐵))

Proof of Theorem bcxmaslem1
StepHypRef Expression
1 oveq2 7370 . 2 (𝐴 = 𝐵 → (𝑁 + 𝐴) = (𝑁 + 𝐵))
2 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
31, 2oveq12d 7380 1 (𝐴 = 𝐵 → ((𝑁 + 𝐴)C𝐴) = ((𝑁 + 𝐵)C𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  (class class class)co 7362   + caddc 11061  Ccbc 14209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-iota 6453  df-fv 6509  df-ov 7365
This theorem is referenced by:  bcxmas  15727  sylow1lem1  19387
  Copyright terms: Public domain W3C validator