MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcxmas Structured version   Visualization version   GIF version

Theorem bcxmas 14851
Description: Parallel summation (Christmas Stocking) theorem for Pascal's Triangle. (Contributed by Paul Chapman, 18-May-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
bcxmas ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗))
Distinct variable groups:   𝑗,𝑀   𝑗,𝑁

Proof of Theorem bcxmas
Dummy variables 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcxmaslem1 14850 . . . . 5 (𝑚 = 0 → (((𝑁 + 1) + 𝑚)C𝑚) = (((𝑁 + 1) + 0)C0))
2 oveq2 6850 . . . . . 6 (𝑚 = 0 → (0...𝑚) = (0...0))
32sumeq1d 14716 . . . . 5 (𝑚 = 0 → Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) = Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗))
41, 3eqeq12d 2780 . . . 4 (𝑚 = 0 → ((((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) ↔ (((𝑁 + 1) + 0)C0) = Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗)))
54imbi2d 331 . . 3 (𝑚 = 0 → ((𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗)) ↔ (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 0)C0) = Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗))))
6 bcxmaslem1 14850 . . . . 5 (𝑚 = 𝑘 → (((𝑁 + 1) + 𝑚)C𝑚) = (((𝑁 + 1) + 𝑘)C𝑘))
7 oveq2 6850 . . . . . 6 (𝑚 = 𝑘 → (0...𝑚) = (0...𝑘))
87sumeq1d 14716 . . . . 5 (𝑚 = 𝑘 → Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗))
96, 8eqeq12d 2780 . . . 4 (𝑚 = 𝑘 → ((((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) ↔ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)))
109imbi2d 331 . . 3 (𝑚 = 𝑘 → ((𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗)) ↔ (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗))))
11 bcxmaslem1 14850 . . . . 5 (𝑚 = (𝑘 + 1) → (((𝑁 + 1) + 𝑚)C𝑚) = (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)))
12 oveq2 6850 . . . . . 6 (𝑚 = (𝑘 + 1) → (0...𝑚) = (0...(𝑘 + 1)))
1312sumeq1d 14716 . . . . 5 (𝑚 = (𝑘 + 1) → Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗))
1411, 13eqeq12d 2780 . . . 4 (𝑚 = (𝑘 + 1) → ((((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) ↔ (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗)))
1514imbi2d 331 . . 3 (𝑚 = (𝑘 + 1) → ((𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗)) ↔ (𝑁 ∈ ℕ0 → (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗))))
16 bcxmaslem1 14850 . . . . 5 (𝑚 = 𝑀 → (((𝑁 + 1) + 𝑚)C𝑚) = (((𝑁 + 1) + 𝑀)C𝑀))
17 oveq2 6850 . . . . . 6 (𝑚 = 𝑀 → (0...𝑚) = (0...𝑀))
1817sumeq1d 14716 . . . . 5 (𝑚 = 𝑀 → Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗))
1916, 18eqeq12d 2780 . . . 4 (𝑚 = 𝑀 → ((((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) ↔ (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗)))
2019imbi2d 331 . . 3 (𝑚 = 𝑀 → ((𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗)) ↔ (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗))))
21 0nn0 11555 . . . . 5 0 ∈ ℕ0
22 nn0addcl 11575 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 0 ∈ ℕ0) → (𝑁 + 0) ∈ ℕ0)
23 bcn0 13301 . . . . . 6 ((𝑁 + 0) ∈ ℕ0 → ((𝑁 + 0)C0) = 1)
2422, 23syl 17 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((𝑁 + 0)C0) = 1)
2521, 24mpan2 682 . . . 4 (𝑁 ∈ ℕ0 → ((𝑁 + 0)C0) = 1)
26 0z 11635 . . . . 5 0 ∈ ℤ
27 1nn0 11556 . . . . . . 7 1 ∈ ℕ0
2825, 27syl6eqel 2852 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 0)C0) ∈ ℕ0)
2928nn0cnd 11600 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 + 0)C0) ∈ ℂ)
30 bcxmaslem1 14850 . . . . . 6 (𝑗 = 0 → ((𝑁 + 𝑗)C𝑗) = ((𝑁 + 0)C0))
3130fsum1 14761 . . . . 5 ((0 ∈ ℤ ∧ ((𝑁 + 0)C0) ∈ ℂ) → Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗) = ((𝑁 + 0)C0))
3226, 29, 31sylancr 581 . . . 4 (𝑁 ∈ ℕ0 → Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗) = ((𝑁 + 0)C0))
33 peano2nn0 11580 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
34 nn0addcl 11575 . . . . . 6 (((𝑁 + 1) ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((𝑁 + 1) + 0) ∈ ℕ0)
3533, 21, 34sylancl 580 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 0) ∈ ℕ0)
36 bcn0 13301 . . . . 5 (((𝑁 + 1) + 0) ∈ ℕ0 → (((𝑁 + 1) + 0)C0) = 1)
3735, 36syl 17 . . . 4 (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 0)C0) = 1)
3825, 32, 373eqtr4rd 2810 . . 3 (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 0)C0) = Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗))
39 simpr 477 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
40 elnn0uz 11925 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ (ℤ‘0))
4139, 40sylib 209 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ (ℤ‘0))
42 simpl 474 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑁 ∈ ℕ0)
43 elfznn0 12640 . . . . . . . . . . . . 13 (𝑗 ∈ (0...(𝑘 + 1)) → 𝑗 ∈ ℕ0)
44 nn0addcl 11575 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑗 ∈ ℕ0) → (𝑁 + 𝑗) ∈ ℕ0)
4542, 43, 44syl2an 589 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...(𝑘 + 1))) → (𝑁 + 𝑗) ∈ ℕ0)
46 elfzelz 12549 . . . . . . . . . . . . 13 (𝑗 ∈ (0...(𝑘 + 1)) → 𝑗 ∈ ℤ)
4746adantl 473 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...(𝑘 + 1))) → 𝑗 ∈ ℤ)
48 bccl 13313 . . . . . . . . . . . 12 (((𝑁 + 𝑗) ∈ ℕ0𝑗 ∈ ℤ) → ((𝑁 + 𝑗)C𝑗) ∈ ℕ0)
4945, 47, 48syl2anc 579 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...(𝑘 + 1))) → ((𝑁 + 𝑗)C𝑗) ∈ ℕ0)
5049nn0cnd 11600 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...(𝑘 + 1))) → ((𝑁 + 𝑗)C𝑗) ∈ ℂ)
51 bcxmaslem1 14850 . . . . . . . . . 10 (𝑗 = (𝑘 + 1) → ((𝑁 + 𝑗)C𝑗) = ((𝑁 + (𝑘 + 1))C(𝑘 + 1)))
5241, 50, 51fsump1 14772 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + ((𝑁 + (𝑘 + 1))C(𝑘 + 1))))
53 nn0cn 11549 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
5453adantr 472 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑁 ∈ ℂ)
55 nn0cn 11549 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
5655adantl 473 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
57 1cnd 10288 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 1 ∈ ℂ)
58 add32r 10509 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 + (𝑘 + 1)) = ((𝑁 + 1) + 𝑘))
5954, 56, 57, 58syl3anc 1490 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + (𝑘 + 1)) = ((𝑁 + 1) + 𝑘))
6059oveq1d 6857 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + (𝑘 + 1))C(𝑘 + 1)) = (((𝑁 + 1) + 𝑘)C(𝑘 + 1)))
6160oveq2d 6858 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + ((𝑁 + (𝑘 + 1))C(𝑘 + 1))) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))))
6252, 61eqtrd 2799 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))))
6362adantr 472 . . . . . . 7 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))))
64 oveq1 6849 . . . . . . . 8 ((((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) → ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))))
6564adantl 473 . . . . . . 7 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))))
66 ax-1cn 10247 . . . . . . . . . . . . 13 1 ∈ ℂ
67 pncan 10541 . . . . . . . . . . . . 13 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
6856, 66, 67sylancl 580 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑘 + 1) − 1) = 𝑘)
6968oveq2d 6858 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘)C((𝑘 + 1) − 1)) = (((𝑁 + 1) + 𝑘)C𝑘))
7069oveq2d 6858 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C((𝑘 + 1) − 1))) = ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C𝑘)))
71 nn0addcl 11575 . . . . . . . . . . . 12 (((𝑁 + 1) ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1) + 𝑘) ∈ ℕ0)
7233, 71sylan 575 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1) + 𝑘) ∈ ℕ0)
73 nn0p1nn 11579 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
7473adantl 473 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ)
7574nnzd 11728 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℤ)
76 bcpasc 13312 . . . . . . . . . . 11 ((((𝑁 + 1) + 𝑘) ∈ ℕ0 ∧ (𝑘 + 1) ∈ ℤ) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C((𝑘 + 1) − 1))) = ((((𝑁 + 1) + 𝑘) + 1)C(𝑘 + 1)))
7772, 75, 76syl2anc 579 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C((𝑘 + 1) − 1))) = ((((𝑁 + 1) + 𝑘) + 1)C(𝑘 + 1)))
7870, 77eqtr3d 2801 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C𝑘)) = ((((𝑁 + 1) + 𝑘) + 1)C(𝑘 + 1)))
79 nn0p1nn 11579 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
80 nnnn0addcl 11570 . . . . . . . . . . . . . 14 (((𝑁 + 1) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑁 + 1) + 𝑘) ∈ ℕ)
8179, 80sylan 575 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1) + 𝑘) ∈ ℕ)
8281nnnn0d 11598 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1) + 𝑘) ∈ ℕ0)
83 bccl 13313 . . . . . . . . . . . 12 ((((𝑁 + 1) + 𝑘) ∈ ℕ0 ∧ (𝑘 + 1) ∈ ℤ) → (((𝑁 + 1) + 𝑘)C(𝑘 + 1)) ∈ ℕ0)
8482, 75, 83syl2anc 579 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘)C(𝑘 + 1)) ∈ ℕ0)
8584nn0cnd 11600 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘)C(𝑘 + 1)) ∈ ℂ)
86 nn0z 11647 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
8786adantl 473 . . . . . . . . . . . . 13 (((𝑁 + 1) ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
88 bccl 13313 . . . . . . . . . . . . 13 ((((𝑁 + 1) + 𝑘) ∈ ℕ0𝑘 ∈ ℤ) → (((𝑁 + 1) + 𝑘)C𝑘) ∈ ℕ0)
8971, 87, 88syl2anc 579 . . . . . . . . . . . 12 (((𝑁 + 1) ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘)C𝑘) ∈ ℕ0)
9033, 89sylan 575 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘)C𝑘) ∈ ℕ0)
9190nn0cnd 11600 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘)C𝑘) ∈ ℂ)
9285, 91addcomd 10492 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C𝑘)) = ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))))
93 peano2cn 10462 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
9453, 93syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
9594adantr 472 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 1) ∈ ℂ)
9695, 56, 57addassd 10316 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘) + 1) = ((𝑁 + 1) + (𝑘 + 1)))
9796oveq1d 6857 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((((𝑁 + 1) + 𝑘) + 1)C(𝑘 + 1)) = (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)))
9878, 92, 973eqtr3d 2807 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))) = (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)))
9998adantr 472 . . . . . . 7 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))) = (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)))
10063, 65, 993eqtr2rd 2806 . . . . . 6 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗))
101100ex 401 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) → (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗)))
102101expcom 402 . . . 4 (𝑘 ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) → (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗))))
103102a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → (𝑁 ∈ ℕ0 → (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗))))
1045, 10, 15, 20, 38, 103nn0ind 11719 . 2 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗)))
105104impcom 396 1 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  cfv 6068  (class class class)co 6842  cc 10187  0cc0 10189  1c1 10190   + caddc 10192  cmin 10520  cn 11274  0cn0 11538  cz 11624  cuz 11886  ...cfz 12533  Ccbc 13293  Σcsu 14701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-clim 14504  df-sum 14702
This theorem is referenced by:  arisum  14876
  Copyright terms: Public domain W3C validator