Step | Hyp | Ref
| Expression |
1 | | bcxmaslem1 15474 |
. . 3
⊢ (𝑚 = 0 → (((𝑁 + 1) + 𝑚)C𝑚) = (((𝑁 + 1) + 0)C0)) |
2 | | oveq2 7263 |
. . . 4
⊢ (𝑚 = 0 → (0...𝑚) = (0...0)) |
3 | 2 | sumeq1d 15341 |
. . 3
⊢ (𝑚 = 0 → Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) = Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗)) |
4 | 1, 3 | eqeq12d 2754 |
. 2
⊢ (𝑚 = 0 → ((((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) ↔ (((𝑁 + 1) + 0)C0) = Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗))) |
5 | | bcxmaslem1 15474 |
. . 3
⊢ (𝑚 = 𝑘 → (((𝑁 + 1) + 𝑚)C𝑚) = (((𝑁 + 1) + 𝑘)C𝑘)) |
6 | | oveq2 7263 |
. . . 4
⊢ (𝑚 = 𝑘 → (0...𝑚) = (0...𝑘)) |
7 | 6 | sumeq1d 15341 |
. . 3
⊢ (𝑚 = 𝑘 → Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) |
8 | 5, 7 | eqeq12d 2754 |
. 2
⊢ (𝑚 = 𝑘 → ((((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) ↔ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗))) |
9 | | bcxmaslem1 15474 |
. . 3
⊢ (𝑚 = (𝑘 + 1) → (((𝑁 + 1) + 𝑚)C𝑚) = (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1))) |
10 | | oveq2 7263 |
. . . 4
⊢ (𝑚 = (𝑘 + 1) → (0...𝑚) = (0...(𝑘 + 1))) |
11 | 10 | sumeq1d 15341 |
. . 3
⊢ (𝑚 = (𝑘 + 1) → Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗)) |
12 | 9, 11 | eqeq12d 2754 |
. 2
⊢ (𝑚 = (𝑘 + 1) → ((((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) ↔ (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗))) |
13 | | bcxmaslem1 15474 |
. . 3
⊢ (𝑚 = 𝑀 → (((𝑁 + 1) + 𝑚)C𝑚) = (((𝑁 + 1) + 𝑀)C𝑀)) |
14 | | oveq2 7263 |
. . . 4
⊢ (𝑚 = 𝑀 → (0...𝑚) = (0...𝑀)) |
15 | 14 | sumeq1d 15341 |
. . 3
⊢ (𝑚 = 𝑀 → Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗)) |
16 | 13, 15 | eqeq12d 2754 |
. 2
⊢ (𝑚 = 𝑀 → ((((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) ↔ (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗))) |
17 | | 0nn0 12178 |
. . . 4
⊢ 0 ∈
ℕ0 |
18 | | nn0addcl 12198 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 0 ∈ ℕ0) → (𝑁 + 0) ∈
ℕ0) |
19 | | bcn0 13952 |
. . . . 5
⊢ ((𝑁 + 0) ∈ ℕ0
→ ((𝑁 + 0)C0) =
1) |
20 | 18, 19 | syl 17 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 0 ∈ ℕ0) → ((𝑁 + 0)C0) = 1) |
21 | 17, 20 | mpan2 687 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 0)C0) =
1) |
22 | | 0z 12260 |
. . . 4
⊢ 0 ∈
ℤ |
23 | | 1nn0 12179 |
. . . . . 6
⊢ 1 ∈
ℕ0 |
24 | 21, 23 | eqeltrdi 2847 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 0)C0) ∈
ℕ0) |
25 | 24 | nn0cnd 12225 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 0)C0) ∈
ℂ) |
26 | | bcxmaslem1 15474 |
. . . . 5
⊢ (𝑗 = 0 → ((𝑁 + 𝑗)C𝑗) = ((𝑁 + 0)C0)) |
27 | 26 | fsum1 15387 |
. . . 4
⊢ ((0
∈ ℤ ∧ ((𝑁 +
0)C0) ∈ ℂ) → Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗) = ((𝑁 + 0)C0)) |
28 | 22, 25, 27 | sylancr 586 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ Σ𝑗 ∈
(0...0)((𝑁 + 𝑗)C𝑗) = ((𝑁 + 0)C0)) |
29 | | peano2nn0 12203 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
30 | | nn0addcl 12198 |
. . . . 5
⊢ (((𝑁 + 1) ∈ ℕ0
∧ 0 ∈ ℕ0) → ((𝑁 + 1) + 0) ∈
ℕ0) |
31 | 29, 17, 30 | sylancl 585 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1) + 0) ∈
ℕ0) |
32 | | bcn0 13952 |
. . . 4
⊢ (((𝑁 + 1) + 0) ∈
ℕ0 → (((𝑁 + 1) + 0)C0) = 1) |
33 | 31, 32 | syl 17 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (((𝑁 + 1) + 0)C0) =
1) |
34 | 21, 28, 33 | 3eqtr4rd 2789 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (((𝑁 + 1) + 0)C0) =
Σ𝑗 ∈
(0...0)((𝑁 + 𝑗)C𝑗)) |
35 | | simpr 484 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → 𝑘 ∈ ℕ0) |
36 | | elnn0uz 12552 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
↔ 𝑘 ∈
(ℤ≥‘0)) |
37 | 35, 36 | sylib 217 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → 𝑘 ∈
(ℤ≥‘0)) |
38 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → 𝑁 ∈
ℕ0) |
39 | | elfznn0 13278 |
. . . . . . . . 9
⊢ (𝑗 ∈ (0...(𝑘 + 1)) → 𝑗 ∈ ℕ0) |
40 | | nn0addcl 12198 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑗 ∈
ℕ0) → (𝑁 + 𝑗) ∈
ℕ0) |
41 | 38, 39, 40 | syl2an 595 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) ∧ 𝑗 ∈ (0...(𝑘 + 1))) → (𝑁 + 𝑗) ∈
ℕ0) |
42 | | elfzelz 13185 |
. . . . . . . . 9
⊢ (𝑗 ∈ (0...(𝑘 + 1)) → 𝑗 ∈ ℤ) |
43 | 42 | adantl 481 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) ∧ 𝑗 ∈ (0...(𝑘 + 1))) → 𝑗 ∈ ℤ) |
44 | | bccl 13964 |
. . . . . . . 8
⊢ (((𝑁 + 𝑗) ∈ ℕ0 ∧ 𝑗 ∈ ℤ) → ((𝑁 + 𝑗)C𝑗) ∈
ℕ0) |
45 | 41, 43, 44 | syl2anc 583 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) ∧ 𝑗 ∈ (0...(𝑘 + 1))) → ((𝑁 + 𝑗)C𝑗) ∈
ℕ0) |
46 | 45 | nn0cnd 12225 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) ∧ 𝑗 ∈ (0...(𝑘 + 1))) → ((𝑁 + 𝑗)C𝑗) ∈ ℂ) |
47 | | bcxmaslem1 15474 |
. . . . . 6
⊢ (𝑗 = (𝑘 + 1) → ((𝑁 + 𝑗)C𝑗) = ((𝑁 + (𝑘 + 1))C(𝑘 + 1))) |
48 | 37, 46, 47 | fsump1 15396 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + ((𝑁 + (𝑘 + 1))C(𝑘 + 1)))) |
49 | | nn0cn 12173 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
50 | 49 | adantr 480 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → 𝑁 ∈ ℂ) |
51 | | nn0cn 12173 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℂ) |
52 | 51 | adantl 481 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → 𝑘 ∈ ℂ) |
53 | | 1cnd 10901 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → 1 ∈ ℂ) |
54 | | add32r 11124 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑁 + (𝑘 + 1)) = ((𝑁 + 1) + 𝑘)) |
55 | 50, 52, 53, 54 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (𝑁 + (𝑘 + 1)) = ((𝑁 + 1) + 𝑘)) |
56 | 55 | oveq1d 7270 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → ((𝑁 + (𝑘 + 1))C(𝑘 + 1)) = (((𝑁 + 1) + 𝑘)C(𝑘 + 1))) |
57 | 56 | oveq2d 7271 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + ((𝑁 + (𝑘 + 1))C(𝑘 + 1))) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1)))) |
58 | 48, 57 | eqtrd 2778 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1)))) |
59 | 58 | adantr 480 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) ∧ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1)))) |
60 | | oveq1 7262 |
. . . 4
⊢ ((((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) → ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1)))) |
61 | 60 | adantl 481 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) ∧ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1)))) |
62 | | ax-1cn 10860 |
. . . . . . . . 9
⊢ 1 ∈
ℂ |
63 | | pncan 11157 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑘 + 1)
− 1) = 𝑘) |
64 | 52, 62, 63 | sylancl 585 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → ((𝑘 + 1) − 1) = 𝑘) |
65 | 64 | oveq2d 7271 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (((𝑁 + 1) + 𝑘)C((𝑘 + 1) − 1)) = (((𝑁 + 1) + 𝑘)C𝑘)) |
66 | 65 | oveq2d 7271 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C((𝑘 + 1) − 1))) = ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C𝑘))) |
67 | | nn0addcl 12198 |
. . . . . . . 8
⊢ (((𝑁 + 1) ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → ((𝑁 + 1) + 𝑘) ∈
ℕ0) |
68 | 29, 67 | sylan 579 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → ((𝑁 + 1) + 𝑘) ∈
ℕ0) |
69 | | nn0p1nn 12202 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℕ) |
70 | 69 | adantl 481 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (𝑘 + 1) ∈ ℕ) |
71 | 70 | nnzd 12354 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (𝑘 + 1) ∈ ℤ) |
72 | | bcpasc 13963 |
. . . . . . 7
⊢ ((((𝑁 + 1) + 𝑘) ∈ ℕ0 ∧ (𝑘 + 1) ∈ ℤ) →
((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C((𝑘 + 1) − 1))) = ((((𝑁 + 1) + 𝑘) + 1)C(𝑘 + 1))) |
73 | 68, 71, 72 | syl2anc 583 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C((𝑘 + 1) − 1))) = ((((𝑁 + 1) + 𝑘) + 1)C(𝑘 + 1))) |
74 | 66, 73 | eqtr3d 2780 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C𝑘)) = ((((𝑁 + 1) + 𝑘) + 1)C(𝑘 + 1))) |
75 | | nn0p1nn 12202 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ) |
76 | | nnnn0addcl 12193 |
. . . . . . . . . 10
⊢ (((𝑁 + 1) ∈ ℕ ∧ 𝑘 ∈ ℕ0)
→ ((𝑁 + 1) + 𝑘) ∈
ℕ) |
77 | 75, 76 | sylan 579 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → ((𝑁 + 1) + 𝑘) ∈ ℕ) |
78 | 77 | nnnn0d 12223 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → ((𝑁 + 1) + 𝑘) ∈
ℕ0) |
79 | | bccl 13964 |
. . . . . . . 8
⊢ ((((𝑁 + 1) + 𝑘) ∈ ℕ0 ∧ (𝑘 + 1) ∈ ℤ) →
(((𝑁 + 1) + 𝑘)C(𝑘 + 1)) ∈
ℕ0) |
80 | 78, 71, 79 | syl2anc 583 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (((𝑁 + 1) + 𝑘)C(𝑘 + 1)) ∈
ℕ0) |
81 | 80 | nn0cnd 12225 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (((𝑁 + 1) + 𝑘)C(𝑘 + 1)) ∈ ℂ) |
82 | | nn0z 12273 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℤ) |
83 | 82 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑁 + 1) ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → 𝑘 ∈ ℤ) |
84 | | bccl 13964 |
. . . . . . . . 9
⊢ ((((𝑁 + 1) + 𝑘) ∈ ℕ0 ∧ 𝑘 ∈ ℤ) → (((𝑁 + 1) + 𝑘)C𝑘) ∈
ℕ0) |
85 | 67, 83, 84 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝑁 + 1) ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (((𝑁 + 1) + 𝑘)C𝑘) ∈
ℕ0) |
86 | 29, 85 | sylan 579 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (((𝑁 + 1) + 𝑘)C𝑘) ∈
ℕ0) |
87 | 86 | nn0cnd 12225 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (((𝑁 + 1) + 𝑘)C𝑘) ∈ ℂ) |
88 | 81, 87 | addcomd 11107 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C𝑘)) = ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1)))) |
89 | | peano2cn 11077 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℂ → (𝑁 + 1) ∈
ℂ) |
90 | 49, 89 | syl 17 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℂ) |
91 | 90 | adantr 480 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (𝑁 + 1) ∈ ℂ) |
92 | 91, 52, 53 | addassd 10928 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (((𝑁 + 1) + 𝑘) + 1) = ((𝑁 + 1) + (𝑘 + 1))) |
93 | 92 | oveq1d 7270 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → ((((𝑁 + 1) + 𝑘) + 1)C(𝑘 + 1)) = (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1))) |
94 | 74, 88, 93 | 3eqtr3d 2786 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))) = (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1))) |
95 | 94 | adantr 480 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) ∧ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))) = (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1))) |
96 | 59, 61, 95 | 3eqtr2rd 2785 |
. 2
⊢ (((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) ∧ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗)) |
97 | 4, 8, 12, 16, 34, 96 | nn0indd 12347 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈
ℕ0) → (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗)) |