MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcxmas Structured version   Visualization version   GIF version

Theorem bcxmas 15883
Description: Parallel summation (Christmas Stocking) theorem for Pascal's Triangle. (Contributed by Paul Chapman, 18-May-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
bcxmas ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗))
Distinct variable groups:   𝑗,𝑀   𝑗,𝑁

Proof of Theorem bcxmas
Dummy variables 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcxmaslem1 15882 . . 3 (𝑚 = 0 → (((𝑁 + 1) + 𝑚)C𝑚) = (((𝑁 + 1) + 0)C0))
2 oveq2 7456 . . . 4 (𝑚 = 0 → (0...𝑚) = (0...0))
32sumeq1d 15748 . . 3 (𝑚 = 0 → Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) = Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗))
41, 3eqeq12d 2756 . 2 (𝑚 = 0 → ((((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) ↔ (((𝑁 + 1) + 0)C0) = Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗)))
5 bcxmaslem1 15882 . . 3 (𝑚 = 𝑘 → (((𝑁 + 1) + 𝑚)C𝑚) = (((𝑁 + 1) + 𝑘)C𝑘))
6 oveq2 7456 . . . 4 (𝑚 = 𝑘 → (0...𝑚) = (0...𝑘))
76sumeq1d 15748 . . 3 (𝑚 = 𝑘 → Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗))
85, 7eqeq12d 2756 . 2 (𝑚 = 𝑘 → ((((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) ↔ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)))
9 bcxmaslem1 15882 . . 3 (𝑚 = (𝑘 + 1) → (((𝑁 + 1) + 𝑚)C𝑚) = (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)))
10 oveq2 7456 . . . 4 (𝑚 = (𝑘 + 1) → (0...𝑚) = (0...(𝑘 + 1)))
1110sumeq1d 15748 . . 3 (𝑚 = (𝑘 + 1) → Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗))
129, 11eqeq12d 2756 . 2 (𝑚 = (𝑘 + 1) → ((((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) ↔ (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗)))
13 bcxmaslem1 15882 . . 3 (𝑚 = 𝑀 → (((𝑁 + 1) + 𝑚)C𝑚) = (((𝑁 + 1) + 𝑀)C𝑀))
14 oveq2 7456 . . . 4 (𝑚 = 𝑀 → (0...𝑚) = (0...𝑀))
1514sumeq1d 15748 . . 3 (𝑚 = 𝑀 → Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗))
1613, 15eqeq12d 2756 . 2 (𝑚 = 𝑀 → ((((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) ↔ (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗)))
17 0nn0 12568 . . . 4 0 ∈ ℕ0
18 nn0addcl 12588 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 0 ∈ ℕ0) → (𝑁 + 0) ∈ ℕ0)
19 bcn0 14359 . . . . 5 ((𝑁 + 0) ∈ ℕ0 → ((𝑁 + 0)C0) = 1)
2018, 19syl 17 . . . 4 ((𝑁 ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((𝑁 + 0)C0) = 1)
2117, 20mpan2 690 . . 3 (𝑁 ∈ ℕ0 → ((𝑁 + 0)C0) = 1)
22 0z 12650 . . . 4 0 ∈ ℤ
23 1nn0 12569 . . . . . 6 1 ∈ ℕ0
2421, 23eqeltrdi 2852 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 + 0)C0) ∈ ℕ0)
2524nn0cnd 12615 . . . 4 (𝑁 ∈ ℕ0 → ((𝑁 + 0)C0) ∈ ℂ)
26 bcxmaslem1 15882 . . . . 5 (𝑗 = 0 → ((𝑁 + 𝑗)C𝑗) = ((𝑁 + 0)C0))
2726fsum1 15795 . . . 4 ((0 ∈ ℤ ∧ ((𝑁 + 0)C0) ∈ ℂ) → Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗) = ((𝑁 + 0)C0))
2822, 25, 27sylancr 586 . . 3 (𝑁 ∈ ℕ0 → Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗) = ((𝑁 + 0)C0))
29 peano2nn0 12593 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
30 nn0addcl 12588 . . . . 5 (((𝑁 + 1) ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((𝑁 + 1) + 0) ∈ ℕ0)
3129, 17, 30sylancl 585 . . . 4 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 0) ∈ ℕ0)
32 bcn0 14359 . . . 4 (((𝑁 + 1) + 0) ∈ ℕ0 → (((𝑁 + 1) + 0)C0) = 1)
3331, 32syl 17 . . 3 (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 0)C0) = 1)
3421, 28, 333eqtr4rd 2791 . 2 (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 0)C0) = Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗))
35 simpr 484 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
36 elnn0uz 12948 . . . . . . 7 (𝑘 ∈ ℕ0𝑘 ∈ (ℤ‘0))
3735, 36sylib 218 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ (ℤ‘0))
38 simpl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑁 ∈ ℕ0)
39 elfznn0 13677 . . . . . . . . 9 (𝑗 ∈ (0...(𝑘 + 1)) → 𝑗 ∈ ℕ0)
40 nn0addcl 12588 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑗 ∈ ℕ0) → (𝑁 + 𝑗) ∈ ℕ0)
4138, 39, 40syl2an 595 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...(𝑘 + 1))) → (𝑁 + 𝑗) ∈ ℕ0)
42 elfzelz 13584 . . . . . . . . 9 (𝑗 ∈ (0...(𝑘 + 1)) → 𝑗 ∈ ℤ)
4342adantl 481 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...(𝑘 + 1))) → 𝑗 ∈ ℤ)
44 bccl 14371 . . . . . . . 8 (((𝑁 + 𝑗) ∈ ℕ0𝑗 ∈ ℤ) → ((𝑁 + 𝑗)C𝑗) ∈ ℕ0)
4541, 43, 44syl2anc 583 . . . . . . 7 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...(𝑘 + 1))) → ((𝑁 + 𝑗)C𝑗) ∈ ℕ0)
4645nn0cnd 12615 . . . . . 6 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...(𝑘 + 1))) → ((𝑁 + 𝑗)C𝑗) ∈ ℂ)
47 bcxmaslem1 15882 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝑁 + 𝑗)C𝑗) = ((𝑁 + (𝑘 + 1))C(𝑘 + 1)))
4837, 46, 47fsump1 15804 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + ((𝑁 + (𝑘 + 1))C(𝑘 + 1))))
49 nn0cn 12563 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
5049adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑁 ∈ ℂ)
51 nn0cn 12563 . . . . . . . . 9 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
5251adantl 481 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
53 1cnd 11285 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 1 ∈ ℂ)
54 add32r 11509 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 + (𝑘 + 1)) = ((𝑁 + 1) + 𝑘))
5550, 52, 53, 54syl3anc 1371 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + (𝑘 + 1)) = ((𝑁 + 1) + 𝑘))
5655oveq1d 7463 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + (𝑘 + 1))C(𝑘 + 1)) = (((𝑁 + 1) + 𝑘)C(𝑘 + 1)))
5756oveq2d 7464 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + ((𝑁 + (𝑘 + 1))C(𝑘 + 1))) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))))
5848, 57eqtrd 2780 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))))
5958adantr 480 . . 3 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))))
60 oveq1 7455 . . . 4 ((((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) → ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))))
6160adantl 481 . . 3 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))))
62 ax-1cn 11242 . . . . . . . . 9 1 ∈ ℂ
63 pncan 11542 . . . . . . . . 9 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
6452, 62, 63sylancl 585 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑘 + 1) − 1) = 𝑘)
6564oveq2d 7464 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘)C((𝑘 + 1) − 1)) = (((𝑁 + 1) + 𝑘)C𝑘))
6665oveq2d 7464 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C((𝑘 + 1) − 1))) = ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C𝑘)))
67 nn0addcl 12588 . . . . . . . 8 (((𝑁 + 1) ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1) + 𝑘) ∈ ℕ0)
6829, 67sylan 579 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1) + 𝑘) ∈ ℕ0)
69 nn0p1nn 12592 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
7069adantl 481 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ)
7170nnzd 12666 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℤ)
72 bcpasc 14370 . . . . . . 7 ((((𝑁 + 1) + 𝑘) ∈ ℕ0 ∧ (𝑘 + 1) ∈ ℤ) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C((𝑘 + 1) − 1))) = ((((𝑁 + 1) + 𝑘) + 1)C(𝑘 + 1)))
7368, 71, 72syl2anc 583 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C((𝑘 + 1) − 1))) = ((((𝑁 + 1) + 𝑘) + 1)C(𝑘 + 1)))
7466, 73eqtr3d 2782 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C𝑘)) = ((((𝑁 + 1) + 𝑘) + 1)C(𝑘 + 1)))
75 nn0p1nn 12592 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
76 nnnn0addcl 12583 . . . . . . . . . 10 (((𝑁 + 1) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑁 + 1) + 𝑘) ∈ ℕ)
7775, 76sylan 579 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1) + 𝑘) ∈ ℕ)
7877nnnn0d 12613 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1) + 𝑘) ∈ ℕ0)
79 bccl 14371 . . . . . . . 8 ((((𝑁 + 1) + 𝑘) ∈ ℕ0 ∧ (𝑘 + 1) ∈ ℤ) → (((𝑁 + 1) + 𝑘)C(𝑘 + 1)) ∈ ℕ0)
8078, 71, 79syl2anc 583 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘)C(𝑘 + 1)) ∈ ℕ0)
8180nn0cnd 12615 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘)C(𝑘 + 1)) ∈ ℂ)
82 nn0z 12664 . . . . . . . . . 10 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
8382adantl 481 . . . . . . . . 9 (((𝑁 + 1) ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
84 bccl 14371 . . . . . . . . 9 ((((𝑁 + 1) + 𝑘) ∈ ℕ0𝑘 ∈ ℤ) → (((𝑁 + 1) + 𝑘)C𝑘) ∈ ℕ0)
8567, 83, 84syl2anc 583 . . . . . . . 8 (((𝑁 + 1) ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘)C𝑘) ∈ ℕ0)
8629, 85sylan 579 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘)C𝑘) ∈ ℕ0)
8786nn0cnd 12615 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘)C𝑘) ∈ ℂ)
8881, 87addcomd 11492 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C𝑘)) = ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))))
89 peano2cn 11462 . . . . . . . . 9 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
9049, 89syl 17 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
9190adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 1) ∈ ℂ)
9291, 52, 53addassd 11312 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘) + 1) = ((𝑁 + 1) + (𝑘 + 1)))
9392oveq1d 7463 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((((𝑁 + 1) + 𝑘) + 1)C(𝑘 + 1)) = (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)))
9474, 88, 933eqtr3d 2788 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))) = (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)))
9594adantr 480 . . 3 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))) = (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)))
9659, 61, 953eqtr2rd 2787 . 2 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗))
974, 8, 12, 16, 34, 96nn0indd 12740 1 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187  cmin 11520  cn 12293  0cn0 12553  cz 12639  cuz 12903  ...cfz 13567  Ccbc 14351  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735
This theorem is referenced by:  arisum  15908
  Copyright terms: Public domain W3C validator