![]() |
Metamath
Proof Explorer Theorem List (p. 159 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | fsump1i 15801* | Optimized version of fsump1 15788 for making sums of a concrete number of terms. (Contributed by Mario Carneiro, 23-Apr-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑁 = (𝐾 + 1) & ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (𝐾 ∈ 𝑍 ∧ Σ𝑘 ∈ (𝑀...𝐾)𝐴 = 𝑆)) & ⊢ (𝜑 → (𝑆 + 𝐵) = 𝑇) ⇒ ⊢ (𝜑 → (𝑁 ∈ 𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑁)𝐴 = 𝑇)) | ||
Theorem | fsum2dlem 15802* | Lemma for fsum2d 15803- induction step. (Contributed by Mario Carneiro, 23-Apr-2014.) |
⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → ¬ 𝑦 ∈ 𝑥) & ⊢ (𝜑 → (𝑥 ∪ {𝑦}) ⊆ 𝐴) & ⊢ (𝜓 ↔ Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷) ⇒ ⊢ ((𝜑 ∧ 𝜓) → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪ 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷) | ||
Theorem | fsum2d 15803* | Write a double sum as a sum over a two-dimensional region. Note that 𝐵(𝑗) is a function of 𝑗. (Contributed by Mario Carneiro, 27-Apr-2014.) |
⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐷) | ||
Theorem | fsumxp 15804* | Combine two sums into a single sum over the cartesian product. (Contributed by Mario Carneiro, 23-Apr-2014.) |
⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ (𝐴 × 𝐵)𝐷) | ||
Theorem | fsumcnv 15805* | Transform a region of summation by using the converse operation. (Contributed by Mario Carneiro, 23-Apr-2014.) |
⊢ (𝑥 = 〈𝑗, 𝑘〉 → 𝐵 = 𝐷) & ⊢ (𝑦 = 〈𝑘, 𝑗〉 → 𝐶 = 𝐷) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → Rel 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 𝐵 = Σ𝑦 ∈ ◡ 𝐴𝐶) | ||
Theorem | fsumcom2 15806* | Interchange order of summation. Note that 𝐵(𝑗) and 𝐷(𝑘) are not necessarily constant expressions. (Contributed by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.) (Proof shortened by JJ, 2-Aug-2021.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ (𝜑 → ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) ↔ (𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷))) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐸 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐸 = Σ𝑘 ∈ 𝐶 Σ𝑗 ∈ 𝐷 𝐸) | ||
Theorem | fsumcom 15807* | Interchange order of summation. (Contributed by NM, 15-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑘 ∈ 𝐵 Σ𝑗 ∈ 𝐴 𝐶) | ||
Theorem | fsum0diaglem 15808* | Lemma for fsum0diag 15809. (Contributed by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.) |
⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → (𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 𝑘)))) | ||
Theorem | fsum0diag 15809* | Two ways to express "the sum of 𝐴(𝑗, 𝑘) over the triangular region 𝑀 ≤ 𝑗, 𝑀 ≤ 𝑘, 𝑗 + 𝑘 ≤ 𝑁". (Contributed by NM, 31-Dec-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.) |
⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗)))) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 = Σ𝑘 ∈ (0...𝑁)Σ𝑗 ∈ (0...(𝑁 − 𝑘))𝐴) | ||
Theorem | mptfzshft 15810* | 1-1 onto function in maps-to notation which shifts a finite set of sequential integers. Formerly part of proof for fsumshft 15812. (Contributed by AV, 24-Aug-2019.) |
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁)) | ||
Theorem | fsumrev 15811* | Reversal of a finite sum. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = (𝐾 − 𝑘) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))𝐵) | ||
Theorem | fsumshft 15812* | Index shift of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) (Proof shortened by AV, 8-Sep-2019.) |
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = (𝑘 − 𝐾) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) | ||
Theorem | fsumshftm 15813* | Negative index shift of a finite sum. (Contributed by NM, 28-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = (𝑘 + 𝐾) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))𝐵) | ||
Theorem | fsumrev2 15814* | Reversal of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 13-Apr-2016.) |
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = ((𝑀 + 𝑁) − 𝑘) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) | ||
Theorem | fsum0diag2 15815* | Two ways to express "the sum of 𝐴(𝑗, 𝑘) over the triangular region 0 ≤ 𝑗, 0 ≤ 𝑘, 𝑗 + 𝑘 ≤ 𝑁". (Contributed by Mario Carneiro, 21-Jul-2014.) |
⊢ (𝑥 = 𝑘 → 𝐵 = 𝐴) & ⊢ (𝑥 = (𝑘 − 𝑗) → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗)))) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 = Σ𝑘 ∈ (0...𝑁)Σ𝑗 ∈ (0...𝑘)𝐶) | ||
Theorem | fsummulc2 15816* | A finite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐶 · Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵)) | ||
Theorem | fsummulc1 15817* | A finite sum multiplied by a constant. (Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶)) | ||
Theorem | fsumdivc 15818* | A finite sum divided by a constant. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 / 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 / 𝐶)) | ||
Theorem | fsumneg 15819* | Negation of a finite sum. (Contributed by Scott Fenton, 12-Jun-2013.) (Revised by Mario Carneiro, 24-Apr-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 -𝐵 = -Σ𝑘 ∈ 𝐴 𝐵) | ||
Theorem | fsumsub 15820* | Split a finite sum over a subtraction. (Contributed by Scott Fenton, 12-Jun-2013.) (Revised by Mario Carneiro, 24-Apr-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐵 − 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 − Σ𝑘 ∈ 𝐴 𝐶)) | ||
Theorem | fsum2mul 15821* | Separate the nested sum of the product 𝐶(𝑗) · 𝐷(𝑘). (Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 (𝐶 · 𝐷) = (Σ𝑗 ∈ 𝐴 𝐶 · Σ𝑘 ∈ 𝐵 𝐷)) | ||
Theorem | fsumconst 15822* | The sum of constant terms (𝑘 is not free in 𝐵). (Contributed by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵)) | ||
Theorem | fsumdifsnconst 15823* | The sum of constant terms (𝑘 is not free in 𝐶) over an index set excluding a singleton. (Contributed by AV, 7-Jan-2022.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ℂ) → Σ𝑘 ∈ (𝐴 ∖ {𝐵})𝐶 = (((♯‘𝐴) − 1) · 𝐶)) | ||
Theorem | modfsummodslem1 15824* | Lemma 1 for modfsummods 15825. (Contributed by Alexander van der Vekens, 1-Sep-2018.) |
⊢ (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℤ) | ||
Theorem | modfsummods 15825* | Induction step for modfsummod 15826. (Contributed by Alexander van der Vekens, 1-Sep-2018.) |
⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ((Σ𝑘 ∈ 𝐴 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝐴 (𝐵 mod 𝑁) mod 𝑁) → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))) | ||
Theorem | modfsummod 15826* | A finite sum modulo a positive integer equals the finite sum of their summands modulo the positive integer, modulo the positive integer. (Contributed by Alexander van der Vekens, 1-Sep-2018.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝐴 (𝐵 mod 𝑁) mod 𝑁)) | ||
Theorem | fsumge0 15827* | If all of the terms of a finite sum are nonnegative, so is the sum. (Contributed by NM, 26-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ 𝐴 𝐵) | ||
Theorem | fsumless 15828* | A shorter sum of nonnegative terms is smaller than a longer one. (Contributed by NM, 26-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐶 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐵) | ||
Theorem | fsumge1 15829* | A sum of nonnegative numbers is greater than or equal to any one of its terms. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 4-Jun-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) & ⊢ (𝑘 = 𝑀 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝑀 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐶 ≤ Σ𝑘 ∈ 𝐴 𝐵) | ||
Theorem | fsum00 15830* | A sum of nonnegative numbers is zero iff all terms are zero. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 24-Apr-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 = 0 ↔ ∀𝑘 ∈ 𝐴 𝐵 = 0)) | ||
Theorem | fsumle 15831* | If all of the terms of finite sums compare, so do the sums. (Contributed by NM, 11-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐶) | ||
Theorem | fsumlt 15832* | If every term in one finite sum is less than the corresponding term in another, then the first sum is less than the second. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Jun-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 < Σ𝑘 ∈ 𝐴 𝐶) | ||
Theorem | fsumabs 15833* | Generalized triangle inequality: the absolute value of a finite sum is less than or equal to the sum of absolute values. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (abs‘Σ𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (abs‘𝐵)) | ||
Theorem | telfsumo 15834* | Sum of a telescoping series, using half-open intervals. (Contributed by Mario Carneiro, 2-May-2016.) |
⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵) & ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶) & ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) & ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐸) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 − 𝐶) = (𝐷 − 𝐸)) | ||
Theorem | telfsumo2 15835* | Sum of a telescoping series. (Contributed by Mario Carneiro, 2-May-2016.) |
⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵) & ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶) & ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) & ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐸) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 − 𝐵) = (𝐸 − 𝐷)) | ||
Theorem | telfsum 15836* | Sum of a telescoping series. (Contributed by Scott Fenton, 24-Apr-2014.) (Revised by Mario Carneiro, 2-May-2016.) |
⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵) & ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶) & ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) & ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)(𝐵 − 𝐶) = (𝐷 − 𝐸)) | ||
Theorem | telfsum2 15837* | Sum of a telescoping series. (Contributed by Mario Carneiro, 15-Jun-2014.) (Revised by Mario Carneiro, 2-May-2016.) |
⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵) & ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶) & ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) & ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)(𝐶 − 𝐵) = (𝐸 − 𝐷)) | ||
Theorem | fsumparts 15838* | Summation by parts. (Contributed by Mario Carneiro, 13-Apr-2016.) |
⊢ (𝑘 = 𝑗 → (𝐴 = 𝐵 ∧ 𝑉 = 𝑊)) & ⊢ (𝑘 = (𝑗 + 1) → (𝐴 = 𝐶 ∧ 𝑉 = 𝑋)) & ⊢ (𝑘 = 𝑀 → (𝐴 = 𝐷 ∧ 𝑉 = 𝑌)) & ⊢ (𝑘 = 𝑁 → (𝐴 = 𝐸 ∧ 𝑉 = 𝑍)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑉 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋 − 𝑊)) = (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶 − 𝐵) · 𝑋))) | ||
Theorem | fsumrelem 15839* | Lemma for fsumre 15840, fsumim 15841, and fsumcj 15842. (Contributed by Mario Carneiro, 25-Jul-2014.) (Revised by Mario Carneiro, 27-Dec-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐹:ℂ⟶ℂ & ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦))) ⇒ ⊢ (𝜑 → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵)) | ||
Theorem | fsumre 15840* | The real part of a sum. (Contributed by Paul Chapman, 9-Nov-2007.) (Revised by Mario Carneiro, 25-Jul-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (ℜ‘𝐵)) | ||
Theorem | fsumim 15841* | The imaginary part of a sum. (Contributed by Paul Chapman, 9-Nov-2007.) (Revised by Mario Carneiro, 25-Jul-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (ℑ‘𝐵)) | ||
Theorem | fsumcj 15842* | The complex conjugate of a sum. (Contributed by Paul Chapman, 9-Nov-2007.) (Revised by Mario Carneiro, 25-Jul-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (∗‘𝐵)) | ||
Theorem | fsumrlim 15843* | Limit of a finite sum of converging sequences. Note that 𝐶(𝑘) is a collection of functions with implicit parameter 𝑘, each of which converges to 𝐷(𝑘) as 𝑛 ⇝ +∞. (Contributed by Mario Carneiro, 22-May-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝐵 𝐷) | ||
Theorem | fsumo1 15844* | The finite sum of eventually bounded functions (where the index set 𝐵 does not depend on 𝑥) is eventually bounded. (Contributed by Mario Carneiro, 30-Apr-2016.) (Proof shortened by Mario Carneiro, 22-May-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝑂(1)) | ||
Theorem | o1fsum 15845* | If 𝐴(𝑘) is O(1), then Σ𝑘 ≤ 𝑥, 𝐴(𝑘) is O(𝑥). (Contributed by Mario Carneiro, 23-May-2016.) |
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → (𝑘 ∈ ℕ ↦ 𝐴) ∈ 𝑂(1)) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) ∈ 𝑂(1)) | ||
Theorem | seqabs 15846* | Generalized triangle inequality: the absolute value of a finite sum is less than or equal to the sum of absolute values. (Contributed by Mario Carneiro, 26-Mar-2014.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → (abs‘(seq𝑀( + , 𝐹)‘𝑁)) ≤ (seq𝑀( + , 𝐺)‘𝑁)) | ||
Theorem | iserabs 15847* | Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) & ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → (abs‘𝐴) ≤ 𝐵) | ||
Theorem | cvgcmp 15848* | A comparison test for convergence of a real infinite series. Exercise 3 of [Gleason] p. 182. (Contributed by NM, 1-May-2005.) (Revised by Mario Carneiro, 24-Mar-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 0 ≤ (𝐺‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐺‘𝑘) ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ ) | ||
Theorem | cvgcmpub 15849* | An upper bound for the limit of a real infinite series. This theorem can also be used to compare two infinite series. (Contributed by Mario Carneiro, 24-Mar-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) & ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 𝐵 ≤ 𝐴) | ||
Theorem | cvgcmpce 15850* | A comparison test for convergence of a complex infinite series. (Contributed by NM, 25-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (abs‘(𝐺‘𝑘)) ≤ (𝐶 · (𝐹‘𝑘))) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ ) | ||
Theorem | abscvgcvg 15851* | An absolutely convergent series is convergent. (Contributed by Mario Carneiro, 28-Apr-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (abs‘(𝐺‘𝑘))) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ ) | ||
Theorem | climfsum 15852* | Limit of a finite sum of converging sequences. Note that 𝐹(𝑘) is a collection of functions with implicit parameter 𝑘, each of which converges to 𝐵(𝑘) as 𝑛 ⇝ +∞. (Contributed by Mario Carneiro, 22-Jul-2014.) (Proof shortened by Mario Carneiro, 22-May-2016.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐹 ⇝ 𝐵) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑛 ∈ 𝑍)) → (𝐹‘𝑛) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛) = Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) ⇒ ⊢ (𝜑 → 𝐻 ⇝ Σ𝑘 ∈ 𝐴 𝐵) | ||
Theorem | fsumiun 15853* | Sum over a disjoint indexed union. (Contributed by Mario Carneiro, 1-Jul-2015.) (Revised by Mario Carneiro, 10-Dec-2016.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵𝐶 = Σ𝑥 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶) | ||
Theorem | hashiun 15854* | The cardinality of a disjoint indexed union. (Contributed by Mario Carneiro, 24-Jan-2015.) (Revised by Mario Carneiro, 10-Dec-2016.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 𝐵) = Σ𝑥 ∈ 𝐴 (♯‘𝐵)) | ||
Theorem | hash2iun 15855* | The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Disj 𝑦 ∈ 𝐵 𝐶) ⇒ ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) = Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 (♯‘𝐶)) | ||
Theorem | hash2iun1dif1 15856* | The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ 𝐵 = (𝐴 ∖ {𝑥}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Disj 𝑦 ∈ 𝐵 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (♯‘𝐶) = 1) ⇒ ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) = ((♯‘𝐴) · ((♯‘𝐴) − 1))) | ||
Theorem | hashrabrex 15857* | The number of elements in a class abstraction with a restricted existential quantification. (Contributed by Alexander van der Vekens, 29-Jul-2018.) |
⊢ (𝜑 → 𝑌 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → {𝑥 ∈ 𝑋 ∣ 𝜓} ∈ Fin) & ⊢ (𝜑 → Disj 𝑦 ∈ 𝑌 {𝑥 ∈ 𝑋 ∣ 𝜓}) ⇒ ⊢ (𝜑 → (♯‘{𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑌 𝜓}) = Σ𝑦 ∈ 𝑌 (♯‘{𝑥 ∈ 𝑋 ∣ 𝜓})) | ||
Theorem | hashuni 15858* | The cardinality of a disjoint union. (Contributed by Mario Carneiro, 24-Jan-2015.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝑥) ⇒ ⊢ (𝜑 → (♯‘∪ 𝐴) = Σ𝑥 ∈ 𝐴 (♯‘𝑥)) | ||
Theorem | qshash 15859* | The cardinality of a set with an equivalence relation is the sum of the cardinalities of its equivalence classes. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ (𝜑 → ∼ Er 𝐴) & ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → (♯‘𝐴) = Σ𝑥 ∈ (𝐴 / ∼ )(♯‘𝑥)) | ||
Theorem | ackbijnn 15860* | Translate the Ackermann bijection ackbij1 10274 onto the positive integers. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ 𝐹 = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (2↑𝑦)) ⇒ ⊢ 𝐹:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0 | ||
Theorem | binomlem 15861* | Lemma for binom 15862 (binomial theorem). Inductive step. (Contributed by NM, 6-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜓 → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝐵↑𝑘)))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ((𝐴 + 𝐵)↑(𝑁 + 1)) = Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵↑𝑘)))) | ||
Theorem | binom 15862* | The binomial theorem: (𝐴 + 𝐵)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴↑𝑘) · (𝐵↑(𝑁 − 𝑘)). Theorem 15-2.8 of [Gleason] p. 296. This part of the proof sets up the induction and does the base case, with the bulk of the work (the induction step) in binomlem 15861. This is Metamath 100 proof #44. (Contributed by NM, 7-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝐵↑𝑘)))) | ||
Theorem | binom1p 15863* | Special case of the binomial theorem for (1 + 𝐴)↑𝑁. (Contributed by Paul Chapman, 10-May-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((1 + 𝐴)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (𝐴↑𝑘))) | ||
Theorem | binom11 15864* | Special case of the binomial theorem for 2↑𝑁. (Contributed by Mario Carneiro, 13-Mar-2014.) |
⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) = Σ𝑘 ∈ (0...𝑁)(𝑁C𝑘)) | ||
Theorem | binom1dif 15865* | A summation for the difference between ((𝐴 + 1)↑𝑁) and (𝐴↑𝑁). (Contributed by Scott Fenton, 9-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((𝐴 + 1)↑𝑁) − (𝐴↑𝑁)) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴↑𝑘))) | ||
Theorem | bcxmaslem1 15866 | Lemma for bcxmas 15867. (Contributed by Paul Chapman, 18-May-2007.) |
⊢ (𝐴 = 𝐵 → ((𝑁 + 𝐴)C𝐴) = ((𝑁 + 𝐵)C𝐵)) | ||
Theorem | bcxmas 15867* | Parallel summation (Christmas Stocking) theorem for Pascal's Triangle. (Contributed by Paul Chapman, 18-May-2007.) (Revised by Mario Carneiro, 24-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗)) | ||
Theorem | incexclem 15868* | Lemma for incexc 15869. (Contributed by Mario Carneiro, 7-Aug-2017.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐵) − (♯‘(𝐵 ∩ ∪ 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(𝐵 ∩ ∩ 𝑠)))) | ||
Theorem | incexc 15869* | The inclusion/exclusion principle for counting the elements of a finite union of finite sets. This is Metamath 100 proof #96. (Contributed by Mario Carneiro, 7-Aug-2017.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘∪ 𝐴) = Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘∩ 𝑠))) | ||
Theorem | incexc2 15870* | The inclusion/exclusion principle for counting the elements of a finite union of finite sets. (Contributed by Mario Carneiro, 7-Aug-2017.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘∪ 𝐴) = Σ𝑛 ∈ (1...(♯‘𝐴))((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘∩ 𝑠))) | ||
Theorem | isumshft 15871* | Index shift of an infinite sum. (Contributed by Paul Chapman, 31-Oct-2007.) (Revised by Mario Carneiro, 24-Apr-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘(𝑀 + 𝐾)) & ⊢ (𝑗 = (𝐾 + 𝑘) → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑊) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝑊 𝐴 = Σ𝑘 ∈ 𝑍 𝐵) | ||
Theorem | isumsplit 15872* | Split off the first 𝑁 terms of an infinite sum. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘 ∈ 𝑊 𝐴)) | ||
Theorem | isum1p 15873* | The infinite sum of a converging infinite series equals the first term plus the infinite sum of the rest of it. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = ((𝐹‘𝑀) + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))𝐴)) | ||
Theorem | isumnn0nn 15874* | Sum from 0 to infinity in terms of sum from 1 to infinity. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.) |
⊢ (𝑘 = 0 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 𝐴 = (𝐵 + Σ𝑘 ∈ ℕ 𝐴)) | ||
Theorem | isumrpcl 15875* | The infinite sum of positive reals is positive. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑊 𝐴 ∈ ℝ+) | ||
Theorem | isumle 15876* | Comparison of two infinite sums. (Contributed by Paul Chapman, 13-Nov-2007.) (Revised by Mario Carneiro, 24-Apr-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 ≤ Σ𝑘 ∈ 𝑍 𝐵) | ||
Theorem | isumless 15877* | A finite sum of nonnegative numbers is less than or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐵) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝑍 𝐵) | ||
Theorem | isumsup2 15878* | An infinite sum of nonnegative terms is equal to the supremum of the partial sums. (Contributed by Mario Carneiro, 12-Jun-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐺 = seq𝑀( + , 𝐹) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ≤ 𝑥) ⇒ ⊢ (𝜑 → 𝐺 ⇝ sup(ran 𝐺, ℝ, < )) | ||
Theorem | isumsup 15879* | An infinite sum of nonnegative terms is equal to the supremum of the partial sums. (Contributed by Mario Carneiro, 12-Jun-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐺 = seq𝑀( + , 𝐹) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ≤ 𝑥) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = sup(ran 𝐺, ℝ, < )) | ||
Theorem | isumltss 15880* | A partial sum of a series with positive terms is less than the infinite sum. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Mar-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 < Σ𝑘 ∈ 𝑍 𝐵) | ||
Theorem | climcndslem1 15881* | Lemma for climcnds 15883: bound the original series by the condensed series. (Contributed by Mario Carneiro, 18-Jul-2014.) |
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐺‘𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛)))) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁)) | ||
Theorem | climcndslem2 15882* | Lemma for climcnds 15883: bound the condensed series by the original series. (Contributed by Mario Carneiro, 18-Jul-2014.) (Proof shortened by AV, 10-Jul-2022.) |
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐺‘𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛)))) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (seq1( + , 𝐺)‘𝑁) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑁)))) | ||
Theorem | climcnds 15883* | The Cauchy condensation test. If 𝑎(𝑘) is a decreasing sequence of nonnegative terms, then Σ𝑘 ∈ ℕ𝑎(𝑘) converges iff Σ𝑛 ∈ ℕ02↑𝑛 · 𝑎(2↑𝑛) converges. (Contributed by Mario Carneiro, 18-Jul-2014.) (Proof shortened by AV, 10-Jul-2022.) |
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐺‘𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛)))) ⇒ ⊢ (𝜑 → (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq0( + , 𝐺) ∈ dom ⇝ )) | ||
Theorem | divrcnv 15884* | The sequence of reciprocals of real numbers, multiplied by the factor 𝐴, converges to zero. (Contributed by Mario Carneiro, 18-Sep-2014.) |
⊢ (𝐴 ∈ ℂ → (𝑛 ∈ ℝ+ ↦ (𝐴 / 𝑛)) ⇝𝑟 0) | ||
Theorem | divcnv 15885* | The sequence of reciprocals of positive integers, multiplied by the factor 𝐴, converges to zero. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 18-Sep-2014.) |
⊢ (𝐴 ∈ ℂ → (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ⇝ 0) | ||
Theorem | flo1 15886 | The floor function satisfies ⌊(𝑥) = 𝑥 + 𝑂(1). (Contributed by Mario Carneiro, 21-May-2016.) |
⊢ (𝑥 ∈ ℝ ↦ (𝑥 − (⌊‘𝑥))) ∈ 𝑂(1) | ||
Theorem | divcnvshft 15887* | Limit of a ratio function. (Contributed by Scott Fenton, 16-Dec-2017.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐴 / (𝑘 + 𝐵))) ⇒ ⊢ (𝜑 → 𝐹 ⇝ 0) | ||
Theorem | supcvg 15888* | Extract a sequence 𝑓 in 𝑋 such that the image of the points in the bounded set 𝐴 converges to the supremum 𝑆 of the set. Similar to Equation 4 of [Kreyszig] p. 144. The proof uses countable choice ax-cc 10472. (Contributed by Mario Carneiro, 15-Feb-2013.) (Proof shortened by Mario Carneiro, 26-Apr-2014.) |
⊢ 𝑋 ∈ V & ⊢ 𝑆 = sup(𝐴, ℝ, < ) & ⊢ 𝑅 = (𝑛 ∈ ℕ ↦ (𝑆 − (1 / 𝑛))) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝐴) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ (𝐹 ∘ 𝑓) ⇝ 𝑆)) | ||
Theorem | infcvgaux1i 15889* | Auxiliary theorem for applications of supcvg 15888. Hypothesis for several supremum theorems. (Contributed by NM, 8-Feb-2008.) |
⊢ 𝑅 = {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} & ⊢ (𝑦 ∈ 𝑋 → 𝐴 ∈ ℝ) & ⊢ 𝑍 ∈ 𝑋 & ⊢ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 ⇒ ⊢ (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧) | ||
Theorem | infcvgaux2i 15890* | Auxiliary theorem for applications of supcvg 15888. (Contributed by NM, 4-Mar-2008.) |
⊢ 𝑅 = {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} & ⊢ (𝑦 ∈ 𝑋 → 𝐴 ∈ ℝ) & ⊢ 𝑍 ∈ 𝑋 & ⊢ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 & ⊢ 𝑆 = -sup(𝑅, ℝ, < ) & ⊢ (𝑦 = 𝐶 → 𝐴 = 𝐵) ⇒ ⊢ (𝐶 ∈ 𝑋 → 𝑆 ≤ 𝐵) | ||
Theorem | harmonic 15891 | The harmonic series 𝐻 diverges. This fact follows from the stronger emcl 27060, which establishes that the harmonic series grows as log𝑛 + γ + o(1), but this uses a more elementary method, attributed to Nicole Oresme (1323-1382). This is Metamath 100 proof #34. (Contributed by Mario Carneiro, 11-Jul-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (1 / 𝑛)) & ⊢ 𝐻 = seq1( + , 𝐹) ⇒ ⊢ ¬ 𝐻 ∈ dom ⇝ | ||
Theorem | arisum 15892* | Arithmetic series sum of the first 𝑁 positive integers. This is Metamath 100 proof #68. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 22-May-2014.) |
⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2)) | ||
Theorem | arisum2 15893* | Arithmetic series sum of the first 𝑁 nonnegative integers. (Contributed by Mario Carneiro, 17-Apr-2015.) (Proof shortened by AV, 2-Aug-2021.) |
⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2)) | ||
Theorem | trireciplem 15894 | Lemma for trirecip 15895. Show that the sum converges. (Contributed by Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) ⇒ ⊢ seq1( + , 𝐹) ⇝ 1 | ||
Theorem | trirecip 15895 | The sum of the reciprocals of the triangle numbers converge to two. This is Metamath 100 proof #42. (Contributed by Scott Fenton, 23-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.) |
⊢ Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = 2 | ||
Theorem | expcnv 15896* | A sequence of powers of a complex number 𝐴 with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Proof shortened by Mario Carneiro, 26-Apr-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) < 1) ⇒ ⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) | ||
Theorem | explecnv 15897* | A sequence of terms converges to zero when it is less than powers of a number 𝐴 whose absolute value is smaller than 1. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 26-Apr-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐴) < 1) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ≤ (𝐴↑𝑘)) ⇒ ⊢ (𝜑 → 𝐹 ⇝ 0) | ||
Theorem | geoserg 15898* | The value of the finite geometric series 𝐴↑𝑀 + 𝐴↑(𝑀 + 1) +... + 𝐴↑(𝑁 − 1). (Contributed by Mario Carneiro, 2-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 1) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) = (((𝐴↑𝑀) − (𝐴↑𝑁)) / (1 − 𝐴))) | ||
Theorem | geoser 15899* | The value of the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). This is Metamath 100 proof #66. (Contributed by NM, 12-May-2006.) (Proof shortened by Mario Carneiro, 15-Jun-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 1) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘) = ((1 − (𝐴↑𝑁)) / (1 − 𝐴))) | ||
Theorem | pwdif 15900* | The difference of two numbers to the same power is the difference of the two numbers multiplied with a finite sum. Generalization of subsq 14245. See Wikipedia "Fermat number", section "Other theorems about Fermat numbers", https://en.wikipedia.org/wiki/Fermat_number 14245, 5-Aug-2021. (Contributed by AV, 6-Aug-2021.) (Revised by AV, 19-Aug-2021.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑𝑁) − (𝐵↑𝑁)) = ((𝐴 − 𝐵) · Σ𝑘 ∈ (0..^𝑁)((𝐴↑𝑘) · (𝐵↑((𝑁 − 𝑘) − 1))))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |