| Metamath
Proof Explorer Theorem List (p. 159 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fsumneg 15801* | Negation of a finite sum. (Contributed by Scott Fenton, 12-Jun-2013.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 -𝐵 = -Σ𝑘 ∈ 𝐴 𝐵) | ||
| Theorem | fsumsub 15802* | Split a finite sum over a subtraction. (Contributed by Scott Fenton, 12-Jun-2013.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐵 − 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 − Σ𝑘 ∈ 𝐴 𝐶)) | ||
| Theorem | fsum2mul 15803* | Separate the nested sum of the product 𝐶(𝑗) · 𝐷(𝑘). (Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 (𝐶 · 𝐷) = (Σ𝑗 ∈ 𝐴 𝐶 · Σ𝑘 ∈ 𝐵 𝐷)) | ||
| Theorem | fsumconst 15804* | The sum of constant terms (𝑘 is not free in 𝐵). (Contributed by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵)) | ||
| Theorem | fsumdifsnconst 15805* | The sum of constant terms (𝑘 is not free in 𝐶) over an index set excluding a singleton. (Contributed by AV, 7-Jan-2022.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ℂ) → Σ𝑘 ∈ (𝐴 ∖ {𝐵})𝐶 = (((♯‘𝐴) − 1) · 𝐶)) | ||
| Theorem | modfsummodslem1 15806* | Lemma 1 for modfsummods 15807. (Contributed by Alexander van der Vekens, 1-Sep-2018.) |
| ⊢ (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℤ) | ||
| Theorem | modfsummods 15807* | Induction step for modfsummod 15808. (Contributed by Alexander van der Vekens, 1-Sep-2018.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ((Σ𝑘 ∈ 𝐴 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝐴 (𝐵 mod 𝑁) mod 𝑁) → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))) | ||
| Theorem | modfsummod 15808* | A finite sum modulo a positive integer equals the finite sum of their summands modulo the positive integer, modulo the positive integer. (Contributed by Alexander van der Vekens, 1-Sep-2018.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝐴 (𝐵 mod 𝑁) mod 𝑁)) | ||
| Theorem | fsumge0 15809* | If all of the terms of a finite sum are nonnegative, so is the sum. (Contributed by NM, 26-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ 𝐴 𝐵) | ||
| Theorem | fsumless 15810* | A shorter sum of nonnegative terms is smaller than a longer one. (Contributed by NM, 26-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐶 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐵) | ||
| Theorem | fsumge1 15811* | A sum of nonnegative numbers is greater than or equal to any one of its terms. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 4-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) & ⊢ (𝑘 = 𝑀 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝑀 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐶 ≤ Σ𝑘 ∈ 𝐴 𝐵) | ||
| Theorem | fsum00 15812* | A sum of nonnegative numbers is zero iff all terms are zero. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 24-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 = 0 ↔ ∀𝑘 ∈ 𝐴 𝐵 = 0)) | ||
| Theorem | fsumle 15813* | If all of the terms of finite sums compare, so do the sums. (Contributed by NM, 11-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐶) | ||
| Theorem | fsumlt 15814* | If every term in one finite sum is less than the corresponding term in another, then the first sum is less than the second. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 < Σ𝑘 ∈ 𝐴 𝐶) | ||
| Theorem | fsumabs 15815* | Generalized triangle inequality: the absolute value of a finite sum is less than or equal to the sum of absolute values. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (abs‘Σ𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (abs‘𝐵)) | ||
| Theorem | telfsumo 15816* | Sum of a telescoping series, using half-open intervals. (Contributed by Mario Carneiro, 2-May-2016.) |
| ⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵) & ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶) & ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) & ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐸) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 − 𝐶) = (𝐷 − 𝐸)) | ||
| Theorem | telfsumo2 15817* | Sum of a telescoping series. (Contributed by Mario Carneiro, 2-May-2016.) |
| ⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵) & ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶) & ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) & ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐸) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 − 𝐵) = (𝐸 − 𝐷)) | ||
| Theorem | telfsum 15818* | Sum of a telescoping series. (Contributed by Scott Fenton, 24-Apr-2014.) (Revised by Mario Carneiro, 2-May-2016.) |
| ⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵) & ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶) & ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) & ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)(𝐵 − 𝐶) = (𝐷 − 𝐸)) | ||
| Theorem | telfsum2 15819* | Sum of a telescoping series. (Contributed by Mario Carneiro, 15-Jun-2014.) (Revised by Mario Carneiro, 2-May-2016.) |
| ⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵) & ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶) & ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) & ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)(𝐶 − 𝐵) = (𝐸 − 𝐷)) | ||
| Theorem | fsumparts 15820* | Summation by parts. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ (𝑘 = 𝑗 → (𝐴 = 𝐵 ∧ 𝑉 = 𝑊)) & ⊢ (𝑘 = (𝑗 + 1) → (𝐴 = 𝐶 ∧ 𝑉 = 𝑋)) & ⊢ (𝑘 = 𝑀 → (𝐴 = 𝐷 ∧ 𝑉 = 𝑌)) & ⊢ (𝑘 = 𝑁 → (𝐴 = 𝐸 ∧ 𝑉 = 𝑍)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑉 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋 − 𝑊)) = (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶 − 𝐵) · 𝑋))) | ||
| Theorem | fsumrelem 15821* | Lemma for fsumre 15822, fsumim 15823, and fsumcj 15824. (Contributed by Mario Carneiro, 25-Jul-2014.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐹:ℂ⟶ℂ & ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦))) ⇒ ⊢ (𝜑 → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵)) | ||
| Theorem | fsumre 15822* | The real part of a sum. (Contributed by Paul Chapman, 9-Nov-2007.) (Revised by Mario Carneiro, 25-Jul-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (ℜ‘𝐵)) | ||
| Theorem | fsumim 15823* | The imaginary part of a sum. (Contributed by Paul Chapman, 9-Nov-2007.) (Revised by Mario Carneiro, 25-Jul-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (ℑ‘𝐵)) | ||
| Theorem | fsumcj 15824* | The complex conjugate of a sum. (Contributed by Paul Chapman, 9-Nov-2007.) (Revised by Mario Carneiro, 25-Jul-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (∗‘𝐵)) | ||
| Theorem | fsumrlim 15825* | Limit of a finite sum of converging sequences. Note that 𝐶(𝑘) is a collection of functions with implicit parameter 𝑘, each of which converges to 𝐷(𝑘) as 𝑛 ⇝ +∞. (Contributed by Mario Carneiro, 22-May-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝐵 𝐷) | ||
| Theorem | fsumo1 15826* | The finite sum of eventually bounded functions (where the index set 𝐵 does not depend on 𝑥) is eventually bounded. (Contributed by Mario Carneiro, 30-Apr-2016.) (Proof shortened by Mario Carneiro, 22-May-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝑂(1)) | ||
| Theorem | o1fsum 15827* | If 𝐴(𝑘) is O(1), then Σ𝑘 ≤ 𝑥, 𝐴(𝑘) is O(𝑥). (Contributed by Mario Carneiro, 23-May-2016.) |
| ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → (𝑘 ∈ ℕ ↦ 𝐴) ∈ 𝑂(1)) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) ∈ 𝑂(1)) | ||
| Theorem | seqabs 15828* | Generalized triangle inequality: the absolute value of a finite sum is less than or equal to the sum of absolute values. (Contributed by Mario Carneiro, 26-Mar-2014.) (Revised by Mario Carneiro, 27-May-2014.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → (abs‘(seq𝑀( + , 𝐹)‘𝑁)) ≤ (seq𝑀( + , 𝐺)‘𝑁)) | ||
| Theorem | iserabs 15829* | Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 27-May-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) & ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → (abs‘𝐴) ≤ 𝐵) | ||
| Theorem | cvgcmp 15830* | A comparison test for convergence of a real infinite series. Exercise 3 of [Gleason] p. 182. (Contributed by NM, 1-May-2005.) (Revised by Mario Carneiro, 24-Mar-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 0 ≤ (𝐺‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐺‘𝑘) ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ ) | ||
| Theorem | cvgcmpub 15831* | An upper bound for the limit of a real infinite series. This theorem can also be used to compare two infinite series. (Contributed by Mario Carneiro, 24-Mar-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) & ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 𝐵 ≤ 𝐴) | ||
| Theorem | cvgcmpce 15832* | A comparison test for convergence of a complex infinite series. (Contributed by NM, 25-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (abs‘(𝐺‘𝑘)) ≤ (𝐶 · (𝐹‘𝑘))) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ ) | ||
| Theorem | abscvgcvg 15833* | An absolutely convergent series is convergent. (Contributed by Mario Carneiro, 28-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (abs‘(𝐺‘𝑘))) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ ) | ||
| Theorem | climfsum 15834* | Limit of a finite sum of converging sequences. Note that 𝐹(𝑘) is a collection of functions with implicit parameter 𝑘, each of which converges to 𝐵(𝑘) as 𝑛 ⇝ +∞. (Contributed by Mario Carneiro, 22-Jul-2014.) (Proof shortened by Mario Carneiro, 22-May-2016.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐹 ⇝ 𝐵) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑛 ∈ 𝑍)) → (𝐹‘𝑛) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛) = Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) ⇒ ⊢ (𝜑 → 𝐻 ⇝ Σ𝑘 ∈ 𝐴 𝐵) | ||
| Theorem | fsumiun 15835* | Sum over a disjoint indexed union. (Contributed by Mario Carneiro, 1-Jul-2015.) (Revised by Mario Carneiro, 10-Dec-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵𝐶 = Σ𝑥 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶) | ||
| Theorem | hashiun 15836* | The cardinality of a disjoint indexed union. (Contributed by Mario Carneiro, 24-Jan-2015.) (Revised by Mario Carneiro, 10-Dec-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 𝐵) = Σ𝑥 ∈ 𝐴 (♯‘𝐵)) | ||
| Theorem | hash2iun 15837* | The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Disj 𝑦 ∈ 𝐵 𝐶) ⇒ ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) = Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 (♯‘𝐶)) | ||
| Theorem | hash2iun1dif1 15838* | The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ 𝐵 = (𝐴 ∖ {𝑥}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Disj 𝑦 ∈ 𝐵 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (♯‘𝐶) = 1) ⇒ ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) = ((♯‘𝐴) · ((♯‘𝐴) − 1))) | ||
| Theorem | hashrabrex 15839* | The number of elements in a class abstraction with a restricted existential quantification. (Contributed by Alexander van der Vekens, 29-Jul-2018.) |
| ⊢ (𝜑 → 𝑌 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → {𝑥 ∈ 𝑋 ∣ 𝜓} ∈ Fin) & ⊢ (𝜑 → Disj 𝑦 ∈ 𝑌 {𝑥 ∈ 𝑋 ∣ 𝜓}) ⇒ ⊢ (𝜑 → (♯‘{𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑌 𝜓}) = Σ𝑦 ∈ 𝑌 (♯‘{𝑥 ∈ 𝑋 ∣ 𝜓})) | ||
| Theorem | hashuni 15840* | The cardinality of a disjoint union. (Contributed by Mario Carneiro, 24-Jan-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝑥) ⇒ ⊢ (𝜑 → (♯‘∪ 𝐴) = Σ𝑥 ∈ 𝐴 (♯‘𝑥)) | ||
| Theorem | qshash 15841* | The cardinality of a set with an equivalence relation is the sum of the cardinalities of its equivalence classes. (Contributed by Mario Carneiro, 16-Jan-2015.) |
| ⊢ (𝜑 → ∼ Er 𝐴) & ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → (♯‘𝐴) = Σ𝑥 ∈ (𝐴 / ∼ )(♯‘𝑥)) | ||
| Theorem | ackbijnn 15842* | Translate the Ackermann bijection ackbij1 10249 onto the positive integers. (Contributed by Mario Carneiro, 16-Jan-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (2↑𝑦)) ⇒ ⊢ 𝐹:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0 | ||
| Theorem | binomlem 15843* | Lemma for binom 15844 (binomial theorem). Inductive step. (Contributed by NM, 6-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜓 → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝐵↑𝑘)))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ((𝐴 + 𝐵)↑(𝑁 + 1)) = Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵↑𝑘)))) | ||
| Theorem | binom 15844* | The binomial theorem: (𝐴 + 𝐵)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴↑𝑘) · (𝐵↑(𝑁 − 𝑘)). Theorem 15-2.8 of [Gleason] p. 296. This part of the proof sets up the induction and does the base case, with the bulk of the work (the induction step) in binomlem 15843. This is Metamath 100 proof #44. (Contributed by NM, 7-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝐵↑𝑘)))) | ||
| Theorem | binom1p 15845* | Special case of the binomial theorem for (1 + 𝐴)↑𝑁. (Contributed by Paul Chapman, 10-May-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((1 + 𝐴)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (𝐴↑𝑘))) | ||
| Theorem | binom11 15846* | Special case of the binomial theorem for 2↑𝑁. (Contributed by Mario Carneiro, 13-Mar-2014.) |
| ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) = Σ𝑘 ∈ (0...𝑁)(𝑁C𝑘)) | ||
| Theorem | binom1dif 15847* | A summation for the difference between ((𝐴 + 1)↑𝑁) and (𝐴↑𝑁). (Contributed by Scott Fenton, 9-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((𝐴 + 1)↑𝑁) − (𝐴↑𝑁)) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴↑𝑘))) | ||
| Theorem | bcxmaslem1 15848 | Lemma for bcxmas 15849. (Contributed by Paul Chapman, 18-May-2007.) |
| ⊢ (𝐴 = 𝐵 → ((𝑁 + 𝐴)C𝐴) = ((𝑁 + 𝐵)C𝐵)) | ||
| Theorem | bcxmas 15849* | Parallel summation (Christmas Stocking) theorem for Pascal's Triangle. (Contributed by Paul Chapman, 18-May-2007.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗)) | ||
| Theorem | incexclem 15850* | Lemma for incexc 15851. (Contributed by Mario Carneiro, 7-Aug-2017.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐵) − (♯‘(𝐵 ∩ ∪ 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(𝐵 ∩ ∩ 𝑠)))) | ||
| Theorem | incexc 15851* | The inclusion/exclusion principle for counting the elements of a finite union of finite sets. This is Metamath 100 proof #96. (Contributed by Mario Carneiro, 7-Aug-2017.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘∪ 𝐴) = Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘∩ 𝑠))) | ||
| Theorem | incexc2 15852* | The inclusion/exclusion principle for counting the elements of a finite union of finite sets. (Contributed by Mario Carneiro, 7-Aug-2017.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘∪ 𝐴) = Σ𝑛 ∈ (1...(♯‘𝐴))((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘∩ 𝑠))) | ||
| Theorem | isumshft 15853* | Index shift of an infinite sum. (Contributed by Paul Chapman, 31-Oct-2007.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘(𝑀 + 𝐾)) & ⊢ (𝑗 = (𝐾 + 𝑘) → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑊) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝑊 𝐴 = Σ𝑘 ∈ 𝑍 𝐵) | ||
| Theorem | isumsplit 15854* | Split off the first 𝑁 terms of an infinite sum. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘 ∈ 𝑊 𝐴)) | ||
| Theorem | isum1p 15855* | The infinite sum of a converging infinite series equals the first term plus the infinite sum of the rest of it. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = ((𝐹‘𝑀) + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))𝐴)) | ||
| Theorem | isumnn0nn 15856* | Sum from 0 to infinity in terms of sum from 1 to infinity. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| ⊢ (𝑘 = 0 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 𝐴 = (𝐵 + Σ𝑘 ∈ ℕ 𝐴)) | ||
| Theorem | isumrpcl 15857* | The infinite sum of positive reals is positive. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑊 𝐴 ∈ ℝ+) | ||
| Theorem | isumle 15858* | Comparison of two infinite sums. (Contributed by Paul Chapman, 13-Nov-2007.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 ≤ Σ𝑘 ∈ 𝑍 𝐵) | ||
| Theorem | isumless 15859* | A finite sum of nonnegative numbers is less than or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐵) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝑍 𝐵) | ||
| Theorem | isumsup2 15860* | An infinite sum of nonnegative terms is equal to the supremum of the partial sums. (Contributed by Mario Carneiro, 12-Jun-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐺 = seq𝑀( + , 𝐹) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ≤ 𝑥) ⇒ ⊢ (𝜑 → 𝐺 ⇝ sup(ran 𝐺, ℝ, < )) | ||
| Theorem | isumsup 15861* | An infinite sum of nonnegative terms is equal to the supremum of the partial sums. (Contributed by Mario Carneiro, 12-Jun-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐺 = seq𝑀( + , 𝐹) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ≤ 𝑥) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = sup(ran 𝐺, ℝ, < )) | ||
| Theorem | isumltss 15862* | A partial sum of a series with positive terms is less than the infinite sum. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 < Σ𝑘 ∈ 𝑍 𝐵) | ||
| Theorem | climcndslem1 15863* | Lemma for climcnds 15865: bound the original series by the condensed series. (Contributed by Mario Carneiro, 18-Jul-2014.) |
| ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐺‘𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛)))) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁)) | ||
| Theorem | climcndslem2 15864* | Lemma for climcnds 15865: bound the condensed series by the original series. (Contributed by Mario Carneiro, 18-Jul-2014.) (Proof shortened by AV, 10-Jul-2022.) |
| ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐺‘𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛)))) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (seq1( + , 𝐺)‘𝑁) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑁)))) | ||
| Theorem | climcnds 15865* | The Cauchy condensation test. If 𝑎(𝑘) is a decreasing sequence of nonnegative terms, then Σ𝑘 ∈ ℕ𝑎(𝑘) converges iff Σ𝑛 ∈ ℕ02↑𝑛 · 𝑎(2↑𝑛) converges. (Contributed by Mario Carneiro, 18-Jul-2014.) (Proof shortened by AV, 10-Jul-2022.) |
| ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐺‘𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛)))) ⇒ ⊢ (𝜑 → (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq0( + , 𝐺) ∈ dom ⇝ )) | ||
| Theorem | divrcnv 15866* | The sequence of reciprocals of real numbers, multiplied by the factor 𝐴, converges to zero. (Contributed by Mario Carneiro, 18-Sep-2014.) |
| ⊢ (𝐴 ∈ ℂ → (𝑛 ∈ ℝ+ ↦ (𝐴 / 𝑛)) ⇝𝑟 0) | ||
| Theorem | divcnv 15867* | The sequence of reciprocals of positive integers, multiplied by the factor 𝐴, converges to zero. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 18-Sep-2014.) |
| ⊢ (𝐴 ∈ ℂ → (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ⇝ 0) | ||
| Theorem | flo1 15868 | The floor function satisfies ⌊(𝑥) = 𝑥 + 𝑂(1). (Contributed by Mario Carneiro, 21-May-2016.) |
| ⊢ (𝑥 ∈ ℝ ↦ (𝑥 − (⌊‘𝑥))) ∈ 𝑂(1) | ||
| Theorem | divcnvshft 15869* | Limit of a ratio function. (Contributed by Scott Fenton, 16-Dec-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐴 / (𝑘 + 𝐵))) ⇒ ⊢ (𝜑 → 𝐹 ⇝ 0) | ||
| Theorem | supcvg 15870* | Extract a sequence 𝑓 in 𝑋 such that the image of the points in the bounded set 𝐴 converges to the supremum 𝑆 of the set. Similar to Equation 4 of [Kreyszig] p. 144. The proof uses countable choice ax-cc 10447. (Contributed by Mario Carneiro, 15-Feb-2013.) (Proof shortened by Mario Carneiro, 26-Apr-2014.) |
| ⊢ 𝑋 ∈ V & ⊢ 𝑆 = sup(𝐴, ℝ, < ) & ⊢ 𝑅 = (𝑛 ∈ ℕ ↦ (𝑆 − (1 / 𝑛))) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝐴) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ (𝐹 ∘ 𝑓) ⇝ 𝑆)) | ||
| Theorem | infcvgaux1i 15871* | Auxiliary theorem for applications of supcvg 15870. Hypothesis for several supremum theorems. (Contributed by NM, 8-Feb-2008.) |
| ⊢ 𝑅 = {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} & ⊢ (𝑦 ∈ 𝑋 → 𝐴 ∈ ℝ) & ⊢ 𝑍 ∈ 𝑋 & ⊢ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 ⇒ ⊢ (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧) | ||
| Theorem | infcvgaux2i 15872* | Auxiliary theorem for applications of supcvg 15870. (Contributed by NM, 4-Mar-2008.) |
| ⊢ 𝑅 = {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} & ⊢ (𝑦 ∈ 𝑋 → 𝐴 ∈ ℝ) & ⊢ 𝑍 ∈ 𝑋 & ⊢ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 & ⊢ 𝑆 = -sup(𝑅, ℝ, < ) & ⊢ (𝑦 = 𝐶 → 𝐴 = 𝐵) ⇒ ⊢ (𝐶 ∈ 𝑋 → 𝑆 ≤ 𝐵) | ||
| Theorem | harmonic 15873 | The harmonic series 𝐻 diverges. This fact follows from the stronger emcl 26963, which establishes that the harmonic series grows as log𝑛 + γ + o(1), but this uses a more elementary method, attributed to Nicole Oresme (1323-1382). This is Metamath 100 proof #34. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (1 / 𝑛)) & ⊢ 𝐻 = seq1( + , 𝐹) ⇒ ⊢ ¬ 𝐻 ∈ dom ⇝ | ||
| Theorem | arisum 15874* | Arithmetic series sum of the first 𝑁 positive integers. This is Metamath 100 proof #68. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 22-May-2014.) |
| ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2)) | ||
| Theorem | arisum2 15875* | Arithmetic series sum of the first 𝑁 nonnegative integers. (Contributed by Mario Carneiro, 17-Apr-2015.) (Proof shortened by AV, 2-Aug-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2)) | ||
| Theorem | trireciplem 15876 | Lemma for trirecip 15877. Show that the sum converges. (Contributed by Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) ⇒ ⊢ seq1( + , 𝐹) ⇝ 1 | ||
| Theorem | trirecip 15877 | The sum of the reciprocals of the triangle numbers converge to two. This is Metamath 100 proof #42. (Contributed by Scott Fenton, 23-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.) |
| ⊢ Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = 2 | ||
| Theorem | expcnv 15878* | A sequence of powers of a complex number 𝐴 with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Proof shortened by Mario Carneiro, 26-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) < 1) ⇒ ⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) | ||
| Theorem | explecnv 15879* | A sequence of terms converges to zero when it is less than powers of a number 𝐴 whose absolute value is smaller than 1. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 26-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐴) < 1) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ≤ (𝐴↑𝑘)) ⇒ ⊢ (𝜑 → 𝐹 ⇝ 0) | ||
| Theorem | geoserg 15880* | The value of the finite geometric series 𝐴↑𝑀 + 𝐴↑(𝑀 + 1) +... + 𝐴↑(𝑁 − 1). (Contributed by Mario Carneiro, 2-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 1) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) = (((𝐴↑𝑀) − (𝐴↑𝑁)) / (1 − 𝐴))) | ||
| Theorem | geoser 15881* | The value of the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). This is Metamath 100 proof #66. (Contributed by NM, 12-May-2006.) (Proof shortened by Mario Carneiro, 15-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 1) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘) = ((1 − (𝐴↑𝑁)) / (1 − 𝐴))) | ||
| Theorem | pwdif 15882* | The difference of two numbers to the same power is the difference of the two numbers multiplied with a finite sum. Generalization of subsq 14226. See Wikipedia "Fermat number", section "Other theorems about Fermat numbers", https://en.wikipedia.org/wiki/Fermat_number 14226, 5-Aug-2021. (Contributed by AV, 6-Aug-2021.) (Revised by AV, 19-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑𝑁) − (𝐵↑𝑁)) = ((𝐴 − 𝐵) · Σ𝑘 ∈ (0..^𝑁)((𝐴↑𝑘) · (𝐵↑((𝑁 − 𝑘) − 1))))) | ||
| Theorem | pwm1geoser 15883* | The n-th power of a number decreased by 1 expressed by the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). (Contributed by AV, 14-Aug-2021.) (Proof shortened by AV, 19-Aug-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐴↑𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘))) | ||
| Theorem | geolim 15884* | The partial sums in the infinite series 1 + 𝐴↑1 + 𝐴↑2... converge to (1 / (1 − 𝐴)). (Contributed by NM, 15-May-2006.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) < 1) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = (𝐴↑𝑘)) ⇒ ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − 𝐴))) | ||
| Theorem | geolim2 15885* | The partial sums in the geometric series 𝐴↑𝑀 + 𝐴↑(𝑀 + 1)... converge to ((𝐴↑𝑀) / (1 − 𝐴)). (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 26-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) < 1) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = (𝐴↑𝑘)) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ ((𝐴↑𝑀) / (1 − 𝐴))) | ||
| Theorem | georeclim 15886* | The limit of a geometric series of reciprocals. (Contributed by Paul Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 1 < (abs‘𝐴)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((1 / 𝐴)↑𝑘)) ⇒ ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1))) | ||
| Theorem | geo2sum 15887* | The value of the finite geometric series 2↑-1 + 2↑-2 +... + 2↑-𝑁, multiplied by a constant. (Contributed by Mario Carneiro, 17-Mar-2014.) (Revised by Mario Carneiro, 26-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)(𝐴 / (2↑𝑘)) = (𝐴 − (𝐴 / (2↑𝑁)))) | ||
| Theorem | geo2sum2 15888* | The value of the finite geometric series 1 + 2 + 4 + 8 +... + 2↑(𝑁 − 1). (Contributed by Mario Carneiro, 7-Sep-2016.) |
| ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = ((2↑𝑁) − 1)) | ||
| Theorem | geo2lim 15889* | The value of the infinite geometric series 2↑-1 + 2↑-2 +... , multiplied by a constant. (Contributed by Mario Carneiro, 15-Jun-2014.) |
| ⊢ 𝐹 = (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘))) ⇒ ⊢ (𝐴 ∈ ℂ → seq1( + , 𝐹) ⇝ 𝐴) | ||
| Theorem | geomulcvg 15890* | The geometric series converges even if it is multiplied by 𝑘 to result in the larger series 𝑘 · 𝐴↑𝑘. (Contributed by Mario Carneiro, 27-Mar-2015.) |
| ⊢ 𝐹 = (𝑘 ∈ ℕ0 ↦ (𝑘 · (𝐴↑𝑘))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , 𝐹) ∈ dom ⇝ ) | ||
| Theorem | geoisum 15891* | The infinite sum of 1 + 𝐴↑1 + 𝐴↑2... is (1 / (1 − 𝐴)). (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 26-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ0 (𝐴↑𝑘) = (1 / (1 − 𝐴))) | ||
| Theorem | geoisumr 15892* | The infinite sum of reciprocals 1 + (1 / 𝐴)↑1 + (1 / 𝐴)↑2... is 𝐴 / (𝐴 − 1). (Contributed by rpenner, 3-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → Σ𝑘 ∈ ℕ0 ((1 / 𝐴)↑𝑘) = (𝐴 / (𝐴 − 1))) | ||
| Theorem | geoisum1 15893* | The infinite sum of 𝐴↑1 + 𝐴↑2... is (𝐴 / (1 − 𝐴)). (Contributed by NM, 1-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ (𝐴↑𝑘) = (𝐴 / (1 − 𝐴))) | ||
| Theorem | geoisum1c 15894* | The infinite sum of 𝐴 · (𝑅↑1) + 𝐴 · (𝑅↑2)... is (𝐴 · 𝑅) / (1 − 𝑅). (Contributed by NM, 2-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝐴 · (𝑅↑𝑘)) = ((𝐴 · 𝑅) / (1 − 𝑅))) | ||
| Theorem | 0.999... 15895 | The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1, according to ZF set theory. Interestingly, about 40% of the people responding to a poll at http://forum.physorg.com/index.php?showtopic=13177 disagree. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.) |
| ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 | ||
| Theorem | geoihalfsum 15896 | Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... = 1. Uses geoisum1 15893. This is a representation of .111... in binary with an infinite number of 1's. Theorem 0.999... 15895 proves a similar claim for .999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017.) (Proof shortened by AV, 9-Jul-2022.) |
| ⊢ Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1 | ||
| Theorem | cvgrat 15897* | Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms beyond some index 𝐵, then the infinite sum of the terms of 𝐹 converges to a complex number. Equivalent to first part of Exercise 4 of [Gleason] p. 182. (Contributed by NM, 26-Apr-2005.) (Proof shortened by Mario Carneiro, 27-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | ||
| Theorem | mertenslem1 15898* | Lemma for mertens 15900. (Contributed by Mario Carneiro, 29-Apr-2014.) |
| ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = 𝐴) & ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (abs‘𝐴)) & ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) & ⊢ (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ ) & ⊢ (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))} & ⊢ (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ≥‘𝑠)(abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) & ⊢ (𝜑 → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑡)(𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))))) & ⊢ (𝜑 → (0 ≤ sup(𝑇, ℝ, < ) ∧ (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑇 𝑤 ≤ 𝑧))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈ (ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸) | ||
| Theorem | mertenslem2 15899* | Lemma for mertens 15900. (Contributed by Mario Carneiro, 28-Apr-2014.) |
| ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = 𝐴) & ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (abs‘𝐴)) & ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) & ⊢ (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ ) & ⊢ (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))} & ⊢ (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ≥‘𝑠)(abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈ (ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸) | ||
| Theorem | mertens 15900* | Mertens' theorem. If 𝐴(𝑗) is an absolutely convergent series and 𝐵(𝑘) is convergent, then (Σ𝑗 ∈ ℕ0𝐴(𝑗) · Σ𝑘 ∈ ℕ0𝐵(𝑘)) = Σ𝑘 ∈ ℕ0Σ𝑗 ∈ (0...𝑘)(𝐴(𝑗) · 𝐵(𝑘 − 𝑗)) (and this latter series is convergent). This latter sum is commonly known as the Cauchy product of the sequences. The proof follows the outline at http://en.wikipedia.org/wiki/Cauchy_product#Proof_of_Mertens.27_theorem. (Contributed by Mario Carneiro, 29-Apr-2014.) |
| ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = 𝐴) & ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (abs‘𝐴)) & ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) & ⊢ (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ ) & ⊢ (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → seq0( + , 𝐻) ⇝ (Σ𝑗 ∈ ℕ0 𝐴 · Σ𝑘 ∈ ℕ0 𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |