| Metamath
Proof Explorer Theorem List (p. 159 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ackbijnn 15801* | Translate the Ackermann bijection ackbij1 10197 onto the positive integers. (Contributed by Mario Carneiro, 16-Jan-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (2↑𝑦)) ⇒ ⊢ 𝐹:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0 | ||
| Theorem | binomlem 15802* | Lemma for binom 15803 (binomial theorem). Inductive step. (Contributed by NM, 6-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜓 → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝐵↑𝑘)))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ((𝐴 + 𝐵)↑(𝑁 + 1)) = Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵↑𝑘)))) | ||
| Theorem | binom 15803* | The binomial theorem: (𝐴 + 𝐵)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴↑𝑘) · (𝐵↑(𝑁 − 𝑘)). Theorem 15-2.8 of [Gleason] p. 296. This part of the proof sets up the induction and does the base case, with the bulk of the work (the induction step) in binomlem 15802. This is Metamath 100 proof #44. (Contributed by NM, 7-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝐵↑𝑘)))) | ||
| Theorem | binom1p 15804* | Special case of the binomial theorem for (1 + 𝐴)↑𝑁. (Contributed by Paul Chapman, 10-May-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((1 + 𝐴)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (𝐴↑𝑘))) | ||
| Theorem | binom11 15805* | Special case of the binomial theorem for 2↑𝑁. (Contributed by Mario Carneiro, 13-Mar-2014.) |
| ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) = Σ𝑘 ∈ (0...𝑁)(𝑁C𝑘)) | ||
| Theorem | binom1dif 15806* | A summation for the difference between ((𝐴 + 1)↑𝑁) and (𝐴↑𝑁). (Contributed by Scott Fenton, 9-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((𝐴 + 1)↑𝑁) − (𝐴↑𝑁)) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴↑𝑘))) | ||
| Theorem | bcxmaslem1 15807 | Lemma for bcxmas 15808. (Contributed by Paul Chapman, 18-May-2007.) |
| ⊢ (𝐴 = 𝐵 → ((𝑁 + 𝐴)C𝐴) = ((𝑁 + 𝐵)C𝐵)) | ||
| Theorem | bcxmas 15808* | Parallel summation (Christmas Stocking) theorem for Pascal's Triangle. (Contributed by Paul Chapman, 18-May-2007.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗)) | ||
| Theorem | incexclem 15809* | Lemma for incexc 15810. (Contributed by Mario Carneiro, 7-Aug-2017.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐵) − (♯‘(𝐵 ∩ ∪ 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(𝐵 ∩ ∩ 𝑠)))) | ||
| Theorem | incexc 15810* | The inclusion/exclusion principle for counting the elements of a finite union of finite sets. This is Metamath 100 proof #96. (Contributed by Mario Carneiro, 7-Aug-2017.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘∪ 𝐴) = Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘∩ 𝑠))) | ||
| Theorem | incexc2 15811* | The inclusion/exclusion principle for counting the elements of a finite union of finite sets. (Contributed by Mario Carneiro, 7-Aug-2017.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘∪ 𝐴) = Σ𝑛 ∈ (1...(♯‘𝐴))((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘∩ 𝑠))) | ||
| Theorem | isumshft 15812* | Index shift of an infinite sum. (Contributed by Paul Chapman, 31-Oct-2007.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘(𝑀 + 𝐾)) & ⊢ (𝑗 = (𝐾 + 𝑘) → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑊) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝑊 𝐴 = Σ𝑘 ∈ 𝑍 𝐵) | ||
| Theorem | isumsplit 15813* | Split off the first 𝑁 terms of an infinite sum. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘 ∈ 𝑊 𝐴)) | ||
| Theorem | isum1p 15814* | The infinite sum of a converging infinite series equals the first term plus the infinite sum of the rest of it. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = ((𝐹‘𝑀) + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))𝐴)) | ||
| Theorem | isumnn0nn 15815* | Sum from 0 to infinity in terms of sum from 1 to infinity. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| ⊢ (𝑘 = 0 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 𝐴 = (𝐵 + Σ𝑘 ∈ ℕ 𝐴)) | ||
| Theorem | isumrpcl 15816* | The infinite sum of positive reals is positive. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑊 𝐴 ∈ ℝ+) | ||
| Theorem | isumle 15817* | Comparison of two infinite sums. (Contributed by Paul Chapman, 13-Nov-2007.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 ≤ Σ𝑘 ∈ 𝑍 𝐵) | ||
| Theorem | isumless 15818* | A finite sum of nonnegative numbers is less than or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐵) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝑍 𝐵) | ||
| Theorem | isumsup2 15819* | An infinite sum of nonnegative terms is equal to the supremum of the partial sums. (Contributed by Mario Carneiro, 12-Jun-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐺 = seq𝑀( + , 𝐹) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ≤ 𝑥) ⇒ ⊢ (𝜑 → 𝐺 ⇝ sup(ran 𝐺, ℝ, < )) | ||
| Theorem | isumsup 15820* | An infinite sum of nonnegative terms is equal to the supremum of the partial sums. (Contributed by Mario Carneiro, 12-Jun-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐺 = seq𝑀( + , 𝐹) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ≤ 𝑥) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = sup(ran 𝐺, ℝ, < )) | ||
| Theorem | isumltss 15821* | A partial sum of a series with positive terms is less than the infinite sum. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 < Σ𝑘 ∈ 𝑍 𝐵) | ||
| Theorem | climcndslem1 15822* | Lemma for climcnds 15824: bound the original series by the condensed series. (Contributed by Mario Carneiro, 18-Jul-2014.) |
| ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐺‘𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛)))) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁)) | ||
| Theorem | climcndslem2 15823* | Lemma for climcnds 15824: bound the condensed series by the original series. (Contributed by Mario Carneiro, 18-Jul-2014.) (Proof shortened by AV, 10-Jul-2022.) |
| ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐺‘𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛)))) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (seq1( + , 𝐺)‘𝑁) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑁)))) | ||
| Theorem | climcnds 15824* | The Cauchy condensation test. If 𝑎(𝑘) is a decreasing sequence of nonnegative terms, then Σ𝑘 ∈ ℕ𝑎(𝑘) converges iff Σ𝑛 ∈ ℕ02↑𝑛 · 𝑎(2↑𝑛) converges. (Contributed by Mario Carneiro, 18-Jul-2014.) (Proof shortened by AV, 10-Jul-2022.) |
| ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐺‘𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛)))) ⇒ ⊢ (𝜑 → (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq0( + , 𝐺) ∈ dom ⇝ )) | ||
| Theorem | divrcnv 15825* | The sequence of reciprocals of real numbers, multiplied by the factor 𝐴, converges to zero. (Contributed by Mario Carneiro, 18-Sep-2014.) |
| ⊢ (𝐴 ∈ ℂ → (𝑛 ∈ ℝ+ ↦ (𝐴 / 𝑛)) ⇝𝑟 0) | ||
| Theorem | divcnv 15826* | The sequence of reciprocals of positive integers, multiplied by the factor 𝐴, converges to zero. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 18-Sep-2014.) |
| ⊢ (𝐴 ∈ ℂ → (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ⇝ 0) | ||
| Theorem | flo1 15827 | The floor function satisfies ⌊(𝑥) = 𝑥 + 𝑂(1). (Contributed by Mario Carneiro, 21-May-2016.) |
| ⊢ (𝑥 ∈ ℝ ↦ (𝑥 − (⌊‘𝑥))) ∈ 𝑂(1) | ||
| Theorem | divcnvshft 15828* | Limit of a ratio function. (Contributed by Scott Fenton, 16-Dec-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐴 / (𝑘 + 𝐵))) ⇒ ⊢ (𝜑 → 𝐹 ⇝ 0) | ||
| Theorem | supcvg 15829* | Extract a sequence 𝑓 in 𝑋 such that the image of the points in the bounded set 𝐴 converges to the supremum 𝑆 of the set. Similar to Equation 4 of [Kreyszig] p. 144. The proof uses countable choice ax-cc 10395. (Contributed by Mario Carneiro, 15-Feb-2013.) (Proof shortened by Mario Carneiro, 26-Apr-2014.) |
| ⊢ 𝑋 ∈ V & ⊢ 𝑆 = sup(𝐴, ℝ, < ) & ⊢ 𝑅 = (𝑛 ∈ ℕ ↦ (𝑆 − (1 / 𝑛))) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝐴) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ (𝐹 ∘ 𝑓) ⇝ 𝑆)) | ||
| Theorem | infcvgaux1i 15830* | Auxiliary theorem for applications of supcvg 15829. Hypothesis for several supremum theorems. (Contributed by NM, 8-Feb-2008.) |
| ⊢ 𝑅 = {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} & ⊢ (𝑦 ∈ 𝑋 → 𝐴 ∈ ℝ) & ⊢ 𝑍 ∈ 𝑋 & ⊢ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 ⇒ ⊢ (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧) | ||
| Theorem | infcvgaux2i 15831* | Auxiliary theorem for applications of supcvg 15829. (Contributed by NM, 4-Mar-2008.) |
| ⊢ 𝑅 = {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} & ⊢ (𝑦 ∈ 𝑋 → 𝐴 ∈ ℝ) & ⊢ 𝑍 ∈ 𝑋 & ⊢ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 & ⊢ 𝑆 = -sup(𝑅, ℝ, < ) & ⊢ (𝑦 = 𝐶 → 𝐴 = 𝐵) ⇒ ⊢ (𝐶 ∈ 𝑋 → 𝑆 ≤ 𝐵) | ||
| Theorem | harmonic 15832 | The harmonic series 𝐻 diverges. This fact follows from the stronger emcl 26920, which establishes that the harmonic series grows as log𝑛 + γ + o(1), but this uses a more elementary method, attributed to Nicole Oresme (1323-1382). This is Metamath 100 proof #34. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (1 / 𝑛)) & ⊢ 𝐻 = seq1( + , 𝐹) ⇒ ⊢ ¬ 𝐻 ∈ dom ⇝ | ||
| Theorem | arisum 15833* | Arithmetic series sum of the first 𝑁 positive integers. This is Metamath 100 proof #68. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 22-May-2014.) |
| ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2)) | ||
| Theorem | arisum2 15834* | Arithmetic series sum of the first 𝑁 nonnegative integers. (Contributed by Mario Carneiro, 17-Apr-2015.) (Proof shortened by AV, 2-Aug-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2)) | ||
| Theorem | trireciplem 15835 | Lemma for trirecip 15836. Show that the sum converges. (Contributed by Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) ⇒ ⊢ seq1( + , 𝐹) ⇝ 1 | ||
| Theorem | trirecip 15836 | The sum of the reciprocals of the triangle numbers converge to two. This is Metamath 100 proof #42. (Contributed by Scott Fenton, 23-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.) |
| ⊢ Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = 2 | ||
| Theorem | expcnv 15837* | A sequence of powers of a complex number 𝐴 with absolute value less than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Proof shortened by Mario Carneiro, 26-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) < 1) ⇒ ⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) | ||
| Theorem | explecnv 15838* | A sequence of terms converges to zero when it is less than powers of a number 𝐴 whose absolute value is less than 1. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 26-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐴) < 1) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ≤ (𝐴↑𝑘)) ⇒ ⊢ (𝜑 → 𝐹 ⇝ 0) | ||
| Theorem | geoserg 15839* | The value of the finite geometric series 𝐴↑𝑀 + 𝐴↑(𝑀 + 1) +... + 𝐴↑(𝑁 − 1). (Contributed by Mario Carneiro, 2-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 1) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) = (((𝐴↑𝑀) − (𝐴↑𝑁)) / (1 − 𝐴))) | ||
| Theorem | geoser 15840* | The value of the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). This is Metamath 100 proof #66. (Contributed by NM, 12-May-2006.) (Proof shortened by Mario Carneiro, 15-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 1) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘) = ((1 − (𝐴↑𝑁)) / (1 − 𝐴))) | ||
| Theorem | pwdif 15841* | The difference of two numbers to the same power is the difference of the two numbers multiplied with a finite sum. Generalization of subsq 14182. See Wikipedia "Fermat number", section "Other theorems about Fermat numbers", https://en.wikipedia.org/wiki/Fermat_number 14182, 5-Aug-2021. (Contributed by AV, 6-Aug-2021.) (Revised by AV, 19-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑𝑁) − (𝐵↑𝑁)) = ((𝐴 − 𝐵) · Σ𝑘 ∈ (0..^𝑁)((𝐴↑𝑘) · (𝐵↑((𝑁 − 𝑘) − 1))))) | ||
| Theorem | pwm1geoser 15842* | The n-th power of a number decreased by 1 expressed by the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). (Contributed by AV, 14-Aug-2021.) (Proof shortened by AV, 19-Aug-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐴↑𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘))) | ||
| Theorem | geolim 15843* | The partial sums in the infinite series 1 + 𝐴↑1 + 𝐴↑2... converge to (1 / (1 − 𝐴)). (Contributed by NM, 15-May-2006.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) < 1) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = (𝐴↑𝑘)) ⇒ ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − 𝐴))) | ||
| Theorem | geolim2 15844* | The partial sums in the geometric series 𝐴↑𝑀 + 𝐴↑(𝑀 + 1)... converge to ((𝐴↑𝑀) / (1 − 𝐴)). (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 26-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) < 1) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = (𝐴↑𝑘)) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ ((𝐴↑𝑀) / (1 − 𝐴))) | ||
| Theorem | georeclim 15845* | The limit of a geometric series of reciprocals. (Contributed by Paul Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 1 < (abs‘𝐴)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((1 / 𝐴)↑𝑘)) ⇒ ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1))) | ||
| Theorem | geo2sum 15846* | The value of the finite geometric series 2↑-1 + 2↑-2 +... + 2↑-𝑁, multiplied by a constant. (Contributed by Mario Carneiro, 17-Mar-2014.) (Revised by Mario Carneiro, 26-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)(𝐴 / (2↑𝑘)) = (𝐴 − (𝐴 / (2↑𝑁)))) | ||
| Theorem | geo2sum2 15847* | The value of the finite geometric series 1 + 2 + 4 + 8 +... + 2↑(𝑁 − 1). (Contributed by Mario Carneiro, 7-Sep-2016.) |
| ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = ((2↑𝑁) − 1)) | ||
| Theorem | geo2lim 15848* | The value of the infinite geometric series 2↑-1 + 2↑-2 +... , multiplied by a constant. (Contributed by Mario Carneiro, 15-Jun-2014.) |
| ⊢ 𝐹 = (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘))) ⇒ ⊢ (𝐴 ∈ ℂ → seq1( + , 𝐹) ⇝ 𝐴) | ||
| Theorem | geomulcvg 15849* | The geometric series converges even if it is multiplied by 𝑘 to result in the larger series 𝑘 · 𝐴↑𝑘. (Contributed by Mario Carneiro, 27-Mar-2015.) |
| ⊢ 𝐹 = (𝑘 ∈ ℕ0 ↦ (𝑘 · (𝐴↑𝑘))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , 𝐹) ∈ dom ⇝ ) | ||
| Theorem | geoisum 15850* | The infinite sum of 1 + 𝐴↑1 + 𝐴↑2... is (1 / (1 − 𝐴)). (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 26-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ0 (𝐴↑𝑘) = (1 / (1 − 𝐴))) | ||
| Theorem | geoisumr 15851* | The infinite sum of reciprocals 1 + (1 / 𝐴)↑1 + (1 / 𝐴)↑2... is 𝐴 / (𝐴 − 1). (Contributed by rpenner, 3-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → Σ𝑘 ∈ ℕ0 ((1 / 𝐴)↑𝑘) = (𝐴 / (𝐴 − 1))) | ||
| Theorem | geoisum1 15852* | The infinite sum of 𝐴↑1 + 𝐴↑2... is (𝐴 / (1 − 𝐴)). (Contributed by NM, 1-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ (𝐴↑𝑘) = (𝐴 / (1 − 𝐴))) | ||
| Theorem | geoisum1c 15853* | The infinite sum of 𝐴 · (𝑅↑1) + 𝐴 · (𝑅↑2)... is (𝐴 · 𝑅) / (1 − 𝑅). (Contributed by NM, 2-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝐴 · (𝑅↑𝑘)) = ((𝐴 · 𝑅) / (1 − 𝑅))) | ||
| Theorem | 0.999... 15854 | The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1, according to ZF set theory. Interestingly, about 40% of the people responding to a poll at http://forum.physorg.com/index.php?showtopic=13177 disagree. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.) |
| ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 | ||
| Theorem | geoihalfsum 15855 | Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... = 1. Uses geoisum1 15852. This is a representation of .111... in binary with an infinite number of 1's. Theorem 0.999... 15854 proves a similar claim for .999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017.) (Proof shortened by AV, 9-Jul-2022.) |
| ⊢ Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1 | ||
| Theorem | cvgrat 15856* | Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms beyond some index 𝐵, then the infinite sum of the terms of 𝐹 converges to a complex number. Equivalent to first part of Exercise 4 of [Gleason] p. 182. (Contributed by NM, 26-Apr-2005.) (Proof shortened by Mario Carneiro, 27-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | ||
| Theorem | mertenslem1 15857* | Lemma for mertens 15859. (Contributed by Mario Carneiro, 29-Apr-2014.) |
| ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = 𝐴) & ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (abs‘𝐴)) & ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) & ⊢ (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ ) & ⊢ (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))} & ⊢ (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ≥‘𝑠)(abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) & ⊢ (𝜑 → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ≥‘𝑡)(𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))))) & ⊢ (𝜑 → (0 ≤ sup(𝑇, ℝ, < ) ∧ (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑇 𝑤 ≤ 𝑧))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈ (ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸) | ||
| Theorem | mertenslem2 15858* | Lemma for mertens 15859. (Contributed by Mario Carneiro, 28-Apr-2014.) |
| ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = 𝐴) & ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (abs‘𝐴)) & ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) & ⊢ (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ ) & ⊢ (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))} & ⊢ (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ≥‘𝑠)(abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈ (ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸) | ||
| Theorem | mertens 15859* | Mertens' theorem. If 𝐴(𝑗) is an absolutely convergent series and 𝐵(𝑘) is convergent, then (Σ𝑗 ∈ ℕ0𝐴(𝑗) · Σ𝑘 ∈ ℕ0𝐵(𝑘)) = Σ𝑘 ∈ ℕ0Σ𝑗 ∈ (0...𝑘)(𝐴(𝑗) · 𝐵(𝑘 − 𝑗)) (and this latter series is convergent). This latter sum is commonly known as the Cauchy product of the sequences. The proof follows the outline at http://en.wikipedia.org/wiki/Cauchy_product#Proof_of_Mertens.27_theorem. (Contributed by Mario Carneiro, 29-Apr-2014.) |
| ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = 𝐴) & ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (abs‘𝐴)) & ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) & ⊢ (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ ) & ⊢ (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → seq0( + , 𝐻) ⇝ (Σ𝑗 ∈ ℕ0 𝐴 · Σ𝑘 ∈ ℕ0 𝐵)) | ||
| Theorem | prodf 15860* | An infinite product of complex terms is a function from an upper set of integers to ℂ. (Contributed by Scott Fenton, 4-Dec-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) ⇒ ⊢ (𝜑 → seq𝑀( · , 𝐹):𝑍⟶ℂ) | ||
| Theorem | clim2prod 15861* | The limit of an infinite product with an initial segment added. (Contributed by Scott Fenton, 18-Dec-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ 𝐴) ⇒ ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ ((seq𝑀( · , 𝐹)‘𝑁) · 𝐴)) | ||
| Theorem | clim2div 15862* | The limit of an infinite product with an initial segment removed. (Contributed by Scott Fenton, 20-Dec-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝐴) & ⊢ (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0) ⇒ ⊢ (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ (𝐴 / (seq𝑀( · , 𝐹)‘𝑁))) | ||
| Theorem | prodfmul 15863* | The product of two infinite products. (Contributed by Scott Fenton, 18-Dec-2017.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = ((𝐹‘𝑘) · (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , 𝐺)‘𝑁))) | ||
| Theorem | prodf1 15864 | The value of the partial products in a one-valued infinite product. (Contributed by Scott Fenton, 5-Dec-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑁 ∈ 𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑁) = 1) | ||
| Theorem | prodf1f 15865 | A one-valued infinite product is equal to the constant one function. (Contributed by Scott Fenton, 5-Dec-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1})) | ||
| Theorem | prodfclim1 15866 | The constant one product converges to one. (Contributed by Scott Fenton, 5-Dec-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) ⇝ 1) | ||
| Theorem | prodfn0 15867* | No term of a nonzero infinite product is zero. (Contributed by Scott Fenton, 14-Jan-2018.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ≠ 0) ⇒ ⊢ (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0) | ||
| Theorem | prodfrec 15868* | The reciprocal of an infinite product. (Contributed by Scott Fenton, 15-Jan-2018.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ≠ 0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) = (1 / (𝐹‘𝑘))) ⇒ ⊢ (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁))) | ||
| Theorem | prodfdiv 15869* | The quotient of two infinite products. (Contributed by Scott Fenton, 15-Jan-2018.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ≠ 0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = ((𝐹‘𝑘) / (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁))) | ||
| Theorem | ntrivcvg 15870* | A non-trivially converging infinite product converges. (Contributed by Scott Fenton, 18-Dec-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) ⇒ ⊢ (𝜑 → seq𝑀( · , 𝐹) ∈ dom ⇝ ) | ||
| Theorem | ntrivcvgn0 15871* | A product that converges to a nonzero value converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋) & ⊢ (𝜑 → 𝑋 ≠ 0) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) | ||
| Theorem | ntrivcvgfvn0 15872* | Any value of a product sequence that converges to a nonzero value is itself nonzero. (Contributed by Scott Fenton, 20-Dec-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋) & ⊢ (𝜑 → 𝑋 ≠ 0) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) ⇒ ⊢ (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0) | ||
| Theorem | ntrivcvgtail 15873* | A tail of a non-trivially convergent sequence converges non-trivially. (Contributed by Scott Fenton, 20-Dec-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋) & ⊢ (𝜑 → 𝑋 ≠ 0) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) ⇒ ⊢ (𝜑 → (( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹)))) | ||
| Theorem | ntrivcvgmullem 15874* | Lemma for ntrivcvgmul 15875. (Contributed by Scott Fenton, 19-Dec-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → 𝑃 ∈ 𝑍) & ⊢ (𝜑 → 𝑋 ≠ 0) & ⊢ (𝜑 → 𝑌 ≠ 0) & ⊢ (𝜑 → seq𝑁( · , 𝐹) ⇝ 𝑋) & ⊢ (𝜑 → seq𝑃( · , 𝐺) ⇝ 𝑌) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ (𝜑 → 𝑁 ≤ 𝑃) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) · (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ 𝑍 ∃𝑤(𝑤 ≠ 0 ∧ seq𝑞( · , 𝐻) ⇝ 𝑤)) | ||
| Theorem | ntrivcvgmul 15875* | The product of two non-trivially converging products converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ (𝜑 → ∃𝑚 ∈ 𝑍 ∃𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) · (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ 𝑍 ∃𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤)) | ||
| Syntax | cprod 15876 | Extend class notation to include complex products. |
| class ∏𝑘 ∈ 𝐴 𝐵 | ||
| Definition | df-prod 15877* | Define the product of a series with an index set of integers 𝐴. This definition takes most of the aspects of df-sum 15660 and adapts them for multiplication instead of addition. However, we insist that in the infinite case, there is a nonzero tail of the sequence. This ensures that the convergence criteria match those of infinite sums. (Contributed by Scott Fenton, 4-Dec-2017.) |
| ⊢ ∏𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) | ||
| Theorem | prodex 15878 | A product is a set. (Contributed by Scott Fenton, 4-Dec-2017.) |
| ⊢ ∏𝑘 ∈ 𝐴 𝐵 ∈ V | ||
| Theorem | prodeq1f 15879 | Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.) |
| ⊢ Ⅎ𝑘𝐴 & ⊢ Ⅎ𝑘𝐵 ⇒ ⊢ (𝐴 = 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) | ||
| Theorem | prodeq1 15880* | Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.) |
| ⊢ (𝐴 = 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) | ||
| Theorem | nfcprod1 15881* | Bound-variable hypothesis builder for product. (Contributed by Scott Fenton, 4-Dec-2017.) |
| ⊢ Ⅎ𝑘𝐴 ⇒ ⊢ Ⅎ𝑘∏𝑘 ∈ 𝐴 𝐵 | ||
| Theorem | nfcprod 15882* | Bound-variable hypothesis builder for product: if 𝑥 is (effectively) not free in 𝐴 and 𝐵, it is not free in ∏𝑘 ∈ 𝐴𝐵. (Contributed by Scott Fenton, 1-Dec-2017.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥∏𝑘 ∈ 𝐴 𝐵 | ||
| Theorem | prodeq2w 15883* | Equality theorem for product, when the class expressions 𝐵 and 𝐶 are equal everywhere. Proved using only Extensionality. (Contributed by Scott Fenton, 4-Dec-2017.) |
| ⊢ (∀𝑘 𝐵 = 𝐶 → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶) | ||
| Theorem | prodeq2ii 15884* | Equality theorem for product, with the class expressions 𝐵 and 𝐶 guarded by I to be always sets. (Contributed by Scott Fenton, 4-Dec-2017.) |
| ⊢ (∀𝑘 ∈ 𝐴 ( I ‘𝐵) = ( I ‘𝐶) → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶) | ||
| Theorem | prodeq2 15885* | Equality theorem for product. (Contributed by Scott Fenton, 4-Dec-2017.) |
| ⊢ (∀𝑘 ∈ 𝐴 𝐵 = 𝐶 → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶) | ||
| Theorem | cbvprod 15886* | Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.) |
| ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) & ⊢ Ⅎ𝑘𝐴 & ⊢ Ⅎ𝑗𝐴 & ⊢ Ⅎ𝑘𝐵 & ⊢ Ⅎ𝑗𝐶 ⇒ ⊢ ∏𝑗 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶 | ||
| Theorem | cbvprodv 15887* | Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.) |
| ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) ⇒ ⊢ ∏𝑗 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶 | ||
| Theorem | cbvprodi 15888* | Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.) |
| ⊢ Ⅎ𝑘𝐵 & ⊢ Ⅎ𝑗𝐶 & ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) ⇒ ⊢ ∏𝑗 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶 | ||
| Theorem | prodeq1i 15889 | Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.) Remove DV conditions. (Revised by GG, 1-Sep-2025.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶 | ||
| Theorem | prodeq1iOLD 15890* | Obsolete version of prodeq1i 15889 as of 1-Sep-2025. (Contributed by Scott Fenton, 4-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶 | ||
| Theorem | prodeq2i 15891* | Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.) |
| ⊢ (𝑘 ∈ 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶 | ||
| Theorem | prodeq12i 15892* | Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.) |
| ⊢ 𝐴 = 𝐵 & ⊢ (𝑘 ∈ 𝐴 → 𝐶 = 𝐷) ⇒ ⊢ ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐷 | ||
| Theorem | prodeq1d 15893* | Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) | ||
| Theorem | prodeq2d 15894* | Equality deduction for product. Note that unlike prodeq2dv 15895, 𝑘 may occur in 𝜑. (Contributed by Scott Fenton, 4-Dec-2017.) |
| ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶) | ||
| Theorem | prodeq2dv 15895* | Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.) |
| ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶) | ||
| Theorem | prodeq2sdv 15896* | Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.) Avoid axioms. (Revised by GG, 1-Sep-2025.) |
| ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶) | ||
| Theorem | prodeq2sdvOLD 15897* | Obsolete version of prodeq2sdv 15896 as of 1-Sep-2025. (Contributed by Scott Fenton, 4-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶) | ||
| Theorem | 2cprodeq2dv 15898* | Equality deduction for double product. (Contributed by Scott Fenton, 4-Dec-2017.) |
| ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 ∏𝑘 ∈ 𝐵 𝐶 = ∏𝑗 ∈ 𝐴 ∏𝑘 ∈ 𝐵 𝐷) | ||
| Theorem | prodeq12dv 15899* | Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐷) | ||
| Theorem | prodeq12rdv 15900* | Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐷) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |