| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-opabssvv | Structured version Visualization version GIF version | ||
| Description: A variant of relopabiv 5812 (which could be proved from it, similarly to relxp 5685 from xpss 5683). (Contributed by BJ, 28-Dec-2023.) |
| Ref | Expression |
|---|---|
| bj-opabssvv | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3468 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | vex 3468 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | pm3.2i 470 | . . . 4 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V)) |
| 5 | 4 | ssopab2i 5537 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} |
| 6 | df-xp 5673 | . 2 ⊢ (V × V) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} | |
| 7 | 5, 6 | sseqtrri 4015 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ (V × V) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2107 Vcvv 3464 ⊆ wss 3933 {copab 5187 × cxp 5665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3466 df-ss 3950 df-opab 5188 df-xp 5673 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |