Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-opabssvv Structured version   Visualization version   GIF version

Theorem bj-opabssvv 36521
Description: A variant of relopabiv 5810 (which could be proved from it, similarly to relxp 5684 from xpss 5682). (Contributed by BJ, 28-Dec-2023.)
Assertion
Ref Expression
bj-opabssvv {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ (V × V)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bj-opabssvv
StepHypRef Expression
1 vex 3470 . . . . 5 𝑥 ∈ V
2 vex 3470 . . . . 5 𝑦 ∈ V
31, 2pm3.2i 470 . . . 4 (𝑥 ∈ V ∧ 𝑦 ∈ V)
43a1i 11 . . 3 (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V))
54ssopab2i 5540 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
6 df-xp 5672 . 2 (V × V) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
75, 6sseqtrri 4011 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ (V × V)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2098  Vcvv 3466  wss 3940  {copab 5200   × cxp 5664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-v 3468  df-in 3947  df-ss 3957  df-opab 5201  df-xp 5672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator