![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-opabssvv | Structured version Visualization version GIF version |
Description: A variant of relopabiv 5810 (which could be proved from it, similarly to relxp 5684 from xpss 5682). (Contributed by BJ, 28-Dec-2023.) |
Ref | Expression |
---|---|
bj-opabssvv | ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ (V × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3470 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | vex 3470 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | pm3.2i 470 | . . . 4 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V)) |
5 | 4 | ssopab2i 5540 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} |
6 | df-xp 5672 | . 2 ⊢ (V × V) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} | |
7 | 5, 6 | sseqtrri 4011 | 1 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ (V × V) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2098 Vcvv 3466 ⊆ wss 3940 {copab 5200 × cxp 5664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-in 3947 df-ss 3957 df-opab 5201 df-xp 5672 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |