| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpss | Structured version Visualization version GIF version | ||
| Description: A Cartesian product is included in the ordered pair universe. Exercise 3 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpss | ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3971 | . 2 ⊢ 𝐴 ⊆ V | |
| 2 | ssv 3971 | . 2 ⊢ 𝐵 ⊆ V | |
| 3 | xpss12 5653 | . 2 ⊢ ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (V × V)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3447 ⊆ wss 3914 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-opab 5170 df-xp 5644 |
| This theorem is referenced by: relxp 5656 copsex2ga 5770 eqbrrdva 5833 relrelss 6246 dff3 7072 eqopi 8004 op1steq 8012 dfoprab4 8034 infxpenlem 9966 nqerf 10883 uzrdgfni 13923 reltrclfv 14983 homarel 17998 relxpchom 18142 frmdplusg 18781 psdmul 22053 upxp 23510 ustrel 24099 utop2nei 24138 utop3cls 24139 fmucndlem 24178 metustrel 24440 xppreima2 32575 df1stres 32627 df2ndres 32628 f1od2 32644 fsuppcurry1 32648 fsuppcurry2 32649 fpwrelmap 32656 metideq 33883 metider 33884 pstmfval 33886 xpinpreima2 33897 tpr2rico 33902 esum2d 34083 dya2iocnrect 34272 mpstssv 35526 txprel 35867 elxp8 37359 mblfinlem1 37651 xrnrel 38355 dihvalrel 41273 rfovcnvf1od 43993 ovolval2lem 46641 sprsymrelfo 47498 |
| Copyright terms: Public domain | W3C validator |