Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpss | Structured version Visualization version GIF version |
Description: A Cartesian product is included in the ordered pair universe. Exercise 3 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
xpss | ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3956 | . 2 ⊢ 𝐴 ⊆ V | |
2 | ssv 3956 | . 2 ⊢ 𝐵 ⊆ V | |
3 | xpss12 5635 | . 2 ⊢ ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (V × V)) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3441 ⊆ wss 3898 × cxp 5618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-in 3905 df-ss 3915 df-opab 5155 df-xp 5626 |
This theorem is referenced by: relxp 5638 copsex2ga 5749 eqbrrdva 5811 relrelss 6211 dff3 7032 eqopi 7935 op1steq 7943 dfoprab4 7963 infxpenlem 9870 nqerf 10787 uzrdgfni 13779 reltrclfv 14827 homarel 17848 relxpchom 17995 frmdplusg 18589 upxp 22880 ustrel 23469 utop2nei 23508 utop3cls 23509 fmucndlem 23549 metustrel 23814 xppreima2 31275 df1stres 31323 df2ndres 31324 f1od2 31343 fsuppcurry1 31347 fsuppcurry2 31348 fpwrelmap 31355 metideq 32141 metider 32142 pstmfval 32144 xpinpreima2 32155 tpr2rico 32160 esum2d 32359 dya2iocnrect 32548 mpstssv 33800 txprel 34277 elxp8 35655 mblfinlem1 35927 xrnrel 36648 dihvalrel 39555 rfovcnvf1od 41942 ovolval2lem 44527 sprsymrelfo 45309 |
Copyright terms: Public domain | W3C validator |