![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpss | Structured version Visualization version GIF version |
Description: A Cartesian product is included in the ordered pair universe. Exercise 3 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
xpss | ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 4033 | . 2 ⊢ 𝐴 ⊆ V | |
2 | ssv 4033 | . 2 ⊢ 𝐵 ⊆ V | |
3 | xpss12 5715 | . 2 ⊢ ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (V × V)) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3488 ⊆ wss 3976 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-xp 5706 |
This theorem is referenced by: relxp 5718 copsex2ga 5831 eqbrrdva 5894 relrelss 6304 dff3 7134 eqopi 8066 op1steq 8074 dfoprab4 8096 infxpenlem 10082 nqerf 10999 uzrdgfni 14009 reltrclfv 15066 homarel 18103 relxpchom 18250 frmdplusg 18889 psdmul 22193 upxp 23652 ustrel 24241 utop2nei 24280 utop3cls 24281 fmucndlem 24321 metustrel 24586 xppreima2 32669 df1stres 32715 df2ndres 32716 f1od2 32735 fsuppcurry1 32739 fsuppcurry2 32740 fpwrelmap 32747 metideq 33839 metider 33840 pstmfval 33842 xpinpreima2 33853 tpr2rico 33858 esum2d 34057 dya2iocnrect 34246 mpstssv 35507 txprel 35843 elxp8 37337 mblfinlem1 37617 xrnrel 38329 dihvalrel 41236 rfovcnvf1od 43966 ovolval2lem 46564 sprsymrelfo 47371 |
Copyright terms: Public domain | W3C validator |