![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpss | Structured version Visualization version GIF version |
Description: A Cartesian product is included in the ordered pair universe. Exercise 3 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
xpss | ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3912 | . 2 ⊢ 𝐴 ⊆ V | |
2 | ssv 3912 | . 2 ⊢ 𝐵 ⊆ V | |
3 | xpss12 5458 | . 2 ⊢ ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (V × V)) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3437 ⊆ wss 3859 × cxp 5441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-v 3439 df-in 3866 df-ss 3874 df-opab 5025 df-xp 5449 |
This theorem is referenced by: relxp 5461 copsex2ga 5566 eqbrrdva 5626 relrelss 5999 dff3 6729 eqopi 7581 op1steq 7589 dfoprab4 7609 infxpenlem 9285 nqerf 10198 uzrdgfni 13176 reltrclfv 14211 homarel 17125 relxpchom 17260 frmdplusg 17830 upxp 21915 ustrel 22503 utop2nei 22542 utop3cls 22543 fmucndlem 22583 metustrel 22845 xppreima2 30085 df1stres 30127 df2ndres 30128 f1od2 30145 fsuppcurry1 30149 fsuppcurry2 30150 fpwrelmap 30157 metideq 30750 metider 30751 pstmfval 30753 xpinpreima2 30767 tpr2rico 30772 esum2d 30969 dya2iocnrect 31156 mpstssv 32394 txprel 32949 bj-elid2 34028 elxp8 34183 mblfinlem1 34460 xrnrel 35156 dihvalrel 37946 rfovcnvf1od 39835 ovolval2lem 42467 sprsymrelfo 43141 |
Copyright terms: Public domain | W3C validator |