| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpss | Structured version Visualization version GIF version | ||
| Description: A Cartesian product is included in the ordered pair universe. Exercise 3 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpss | ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3959 | . 2 ⊢ 𝐴 ⊆ V | |
| 2 | ssv 3959 | . 2 ⊢ 𝐵 ⊆ V | |
| 3 | xpss12 5631 | . 2 ⊢ ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (V × V)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3436 ⊆ wss 3902 × cxp 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3919 df-opab 5154 df-xp 5622 |
| This theorem is referenced by: relxp 5634 copsex2ga 5747 eqbrrdva 5809 relrelss 6220 dff3 7033 eqopi 7957 op1steq 7965 dfoprab4 7987 infxpenlem 9901 nqerf 10818 uzrdgfni 13862 reltrclfv 14921 homarel 17940 relxpchom 18084 frmdplusg 18759 psdmul 22079 upxp 23536 ustrel 24125 utop2nei 24163 utop3cls 24164 fmucndlem 24203 metustrel 24465 xppreima2 32628 df1stres 32680 df2ndres 32681 f1od2 32697 fsuppcurry1 32702 fsuppcurry2 32703 fpwrelmap 32711 metideq 33901 metider 33902 pstmfval 33904 xpinpreima2 33915 tpr2rico 33920 esum2d 34101 dya2iocnrect 34289 mpstssv 35571 txprel 35912 elxp8 37404 mblfinlem1 37696 xrnrel 38400 dihvalrel 41317 rfovcnvf1od 44036 ovolval2lem 46680 sprsymrelfo 47527 |
| Copyright terms: Public domain | W3C validator |