| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpss | Structured version Visualization version GIF version | ||
| Description: A Cartesian product is included in the ordered pair universe. Exercise 3 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpss | ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3955 | . 2 ⊢ 𝐴 ⊆ V | |
| 2 | ssv 3955 | . 2 ⊢ 𝐵 ⊆ V | |
| 3 | xpss12 5634 | . 2 ⊢ ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (V × V)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3437 ⊆ wss 3898 × cxp 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-opab 5156 df-xp 5625 |
| This theorem is referenced by: relxp 5637 copsex2ga 5751 eqbrrdva 5813 relrelss 6225 dff3 7039 eqopi 7963 op1steq 7971 dfoprab4 7993 infxpenlem 9911 nqerf 10828 uzrdgfni 13867 reltrclfv 14926 homarel 17945 relxpchom 18089 frmdplusg 18764 psdmul 22082 upxp 23539 ustrel 24128 utop2nei 24166 utop3cls 24167 fmucndlem 24206 metustrel 24468 xppreima2 32635 df1stres 32689 df2ndres 32690 f1od2 32706 fsuppcurry1 32711 fsuppcurry2 32712 fpwrelmap 32720 metideq 33927 metider 33928 pstmfval 33930 xpinpreima2 33941 tpr2rico 33946 esum2d 34127 dya2iocnrect 34315 mpstssv 35604 txprel 35942 elxp8 37436 mblfinlem1 37717 xrnrel 38426 dihvalrel 41398 rfovcnvf1od 44121 ovolval2lem 46765 sprsymrelfo 47621 |
| Copyright terms: Public domain | W3C validator |