| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpss | Structured version Visualization version GIF version | ||
| Description: A Cartesian product is included in the ordered pair universe. Exercise 3 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpss | ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3962 | . 2 ⊢ 𝐴 ⊆ V | |
| 2 | ssv 3962 | . 2 ⊢ 𝐵 ⊆ V | |
| 3 | xpss12 5638 | . 2 ⊢ ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (V × V)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3438 ⊆ wss 3905 × cxp 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-ss 3922 df-opab 5158 df-xp 5629 |
| This theorem is referenced by: relxp 5641 copsex2ga 5754 eqbrrdva 5816 relrelss 6225 dff3 7038 eqopi 7967 op1steq 7975 dfoprab4 7997 infxpenlem 9926 nqerf 10843 uzrdgfni 13883 reltrclfv 14942 homarel 17961 relxpchom 18105 frmdplusg 18746 psdmul 22069 upxp 23526 ustrel 24115 utop2nei 24154 utop3cls 24155 fmucndlem 24194 metustrel 24456 xppreima2 32608 df1stres 32660 df2ndres 32661 f1od2 32677 fsuppcurry1 32681 fsuppcurry2 32682 fpwrelmap 32689 metideq 33859 metider 33860 pstmfval 33862 xpinpreima2 33873 tpr2rico 33878 esum2d 34059 dya2iocnrect 34248 mpstssv 35511 txprel 35852 elxp8 37344 mblfinlem1 37636 xrnrel 38340 dihvalrel 41258 rfovcnvf1od 43977 ovolval2lem 46625 sprsymrelfo 47482 |
| Copyright terms: Public domain | W3C validator |