| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpss | Structured version Visualization version GIF version | ||
| Description: A Cartesian product is included in the ordered pair universe. Exercise 3 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpss | ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3983 | . 2 ⊢ 𝐴 ⊆ V | |
| 2 | ssv 3983 | . 2 ⊢ 𝐵 ⊆ V | |
| 3 | xpss12 5669 | . 2 ⊢ ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (V × V)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3459 ⊆ wss 3926 × cxp 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-opab 5182 df-xp 5660 |
| This theorem is referenced by: relxp 5672 copsex2ga 5786 eqbrrdva 5849 relrelss 6262 dff3 7089 eqopi 8022 op1steq 8030 dfoprab4 8052 infxpenlem 10025 nqerf 10942 uzrdgfni 13974 reltrclfv 15034 homarel 18047 relxpchom 18191 frmdplusg 18830 psdmul 22102 upxp 23559 ustrel 24148 utop2nei 24187 utop3cls 24188 fmucndlem 24227 metustrel 24489 xppreima2 32575 df1stres 32627 df2ndres 32628 f1od2 32644 fsuppcurry1 32648 fsuppcurry2 32649 fpwrelmap 32656 metideq 33870 metider 33871 pstmfval 33873 xpinpreima2 33884 tpr2rico 33889 esum2d 34070 dya2iocnrect 34259 mpstssv 35507 txprel 35843 elxp8 37335 mblfinlem1 37627 xrnrel 38337 dihvalrel 41244 rfovcnvf1od 43975 ovolval2lem 46620 sprsymrelfo 47459 |
| Copyright terms: Public domain | W3C validator |