Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpss | Structured version Visualization version GIF version |
Description: A Cartesian product is included in the ordered pair universe. Exercise 3 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
xpss | ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3941 | . 2 ⊢ 𝐴 ⊆ V | |
2 | ssv 3941 | . 2 ⊢ 𝐵 ⊆ V | |
3 | xpss12 5595 | . 2 ⊢ ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (V × V)) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3422 ⊆ wss 3883 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 |
This theorem is referenced by: relxp 5598 copsex2ga 5706 eqbrrdva 5767 relrelss 6165 dff3 6958 eqopi 7840 op1steq 7848 dfoprab4 7868 infxpenlem 9700 nqerf 10617 uzrdgfni 13606 reltrclfv 14656 homarel 17667 relxpchom 17814 frmdplusg 18408 upxp 22682 ustrel 23271 utop2nei 23310 utop3cls 23311 fmucndlem 23351 metustrel 23614 xppreima2 30889 df1stres 30938 df2ndres 30939 f1od2 30958 fsuppcurry1 30962 fsuppcurry2 30963 fpwrelmap 30970 metideq 31745 metider 31746 pstmfval 31748 xpinpreima2 31759 tpr2rico 31764 esum2d 31961 dya2iocnrect 32148 mpstssv 33401 txprel 34108 elxp8 35469 mblfinlem1 35741 xrnrel 36430 dihvalrel 39220 rfovcnvf1od 41501 ovolval2lem 44071 sprsymrelfo 44837 |
Copyright terms: Public domain | W3C validator |