| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpss | Structured version Visualization version GIF version | ||
| Description: A Cartesian product is included in the ordered pair universe. Exercise 3 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpss | ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3974 | . 2 ⊢ 𝐴 ⊆ V | |
| 2 | ssv 3974 | . 2 ⊢ 𝐵 ⊆ V | |
| 3 | xpss12 5656 | . 2 ⊢ ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (V × V)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3450 ⊆ wss 3917 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-opab 5173 df-xp 5647 |
| This theorem is referenced by: relxp 5659 copsex2ga 5773 eqbrrdva 5836 relrelss 6249 dff3 7075 eqopi 8007 op1steq 8015 dfoprab4 8037 infxpenlem 9973 nqerf 10890 uzrdgfni 13930 reltrclfv 14990 homarel 18005 relxpchom 18149 frmdplusg 18788 psdmul 22060 upxp 23517 ustrel 24106 utop2nei 24145 utop3cls 24146 fmucndlem 24185 metustrel 24447 xppreima2 32582 df1stres 32634 df2ndres 32635 f1od2 32651 fsuppcurry1 32655 fsuppcurry2 32656 fpwrelmap 32663 metideq 33890 metider 33891 pstmfval 33893 xpinpreima2 33904 tpr2rico 33909 esum2d 34090 dya2iocnrect 34279 mpstssv 35533 txprel 35874 elxp8 37366 mblfinlem1 37658 xrnrel 38362 dihvalrel 41280 rfovcnvf1od 44000 ovolval2lem 46648 sprsymrelfo 47502 |
| Copyright terms: Public domain | W3C validator |