![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpss | Structured version Visualization version GIF version |
Description: A Cartesian product is included in the ordered pair universe. Exercise 3 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
xpss | ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 4019 | . 2 ⊢ 𝐴 ⊆ V | |
2 | ssv 4019 | . 2 ⊢ 𝐵 ⊆ V | |
3 | xpss12 5703 | . 2 ⊢ ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (V × V)) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3477 ⊆ wss 3962 × cxp 5686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-ss 3979 df-opab 5210 df-xp 5694 |
This theorem is referenced by: relxp 5706 copsex2ga 5819 eqbrrdva 5882 relrelss 6294 dff3 7119 eqopi 8048 op1steq 8056 dfoprab4 8078 infxpenlem 10050 nqerf 10967 uzrdgfni 13995 reltrclfv 15052 homarel 18089 relxpchom 18236 frmdplusg 18879 psdmul 22187 upxp 23646 ustrel 24235 utop2nei 24274 utop3cls 24275 fmucndlem 24315 metustrel 24580 xppreima2 32667 df1stres 32718 df2ndres 32719 f1od2 32738 fsuppcurry1 32742 fsuppcurry2 32743 fpwrelmap 32750 metideq 33853 metider 33854 pstmfval 33856 xpinpreima2 33867 tpr2rico 33872 esum2d 34073 dya2iocnrect 34262 mpstssv 35523 txprel 35860 elxp8 37353 mblfinlem1 37643 xrnrel 38354 dihvalrel 41261 rfovcnvf1od 43993 ovolval2lem 46598 sprsymrelfo 47421 |
Copyright terms: Public domain | W3C validator |