Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relxp | Structured version Visualization version GIF version |
Description: A Cartesian product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
relxp | ⊢ Rel (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss 5596 | . 2 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | |
2 | df-rel 5587 | . 2 ⊢ (Rel (𝐴 × 𝐵) ↔ (𝐴 × 𝐵) ⊆ (V × V)) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ Rel (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3422 ⊆ wss 3883 × cxp 5578 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-rel 5587 |
This theorem is referenced by: xpsspw 5708 relinxp 5713 xpiindi 5733 eliunxp 5735 opeliunxp2 5736 relres 5909 restidsing 5951 codir 6014 qfto 6015 difxp 6056 sofld 6079 cnvcnv 6084 dfco2 6138 unixp 6174 ressn 6177 fliftcnv 7162 fliftfun 7163 oprssdm 7431 frxp 7938 opeliunxp2f 7997 reltpos 8018 tposfo 8040 tposf 8041 swoer 8486 xpider 8535 xpcomf1o 8801 fpwwe2lem8 10325 ordpinq 10630 addassnq 10645 mulassnq 10646 distrnq 10648 mulidnq 10650 recmulnq 10651 ltexnq 10662 prcdnq 10680 ltrel 10968 lerel 10970 dfle2 12810 fsumcom2 15414 fprodcom2 15622 0rest 17057 firest 17060 2oppchomf 17352 isinv 17389 invsym2 17392 invfun 17393 oppcsect2 17408 oppcinv 17409 oppchofcl 17894 oyoncl 17904 clatl 18141 gicer 18807 gsum2d2lem 19489 gsum2d2 19490 gsumcom2 19491 gsumxp 19492 dprd2d2 19562 mattpostpos 21511 mdetunilem9 21677 restbas 22217 txuni2 22624 txcls 22663 txdis1cn 22694 txkgen 22711 hmpher 22843 cnextrel 23122 tgphaus 23176 qustgplem 23180 tsmsxp 23214 utop2nei 23310 utop3cls 23311 xmeter 23494 caubl 24377 ovoliunlem1 24571 reldv 24939 taylf 25425 lgsquadlem1 26433 lgsquadlem2 26434 nvrel 28865 dfcnv2 30915 gsumpart 31217 qusxpid 31461 qtophaus 31688 cvmliftlem1 33147 cvmlift2lem12 33176 gonan0 33254 xpab 33579 dfso2 33628 frxp2 33718 frxp3 33724 relbigcup 34126 poimirlem3 35707 heicant 35739 vvdifopab 36326 dvhopellsm 39058 dibvalrel 39104 dib1dim 39106 diclspsn 39135 dih1 39227 dih1dimatlem 39270 aoprssdm 44581 eliunxp2 45557 joindm2 46150 meetdm2 46152 |
Copyright terms: Public domain | W3C validator |