Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relxp | Structured version Visualization version GIF version |
Description: A Cartesian product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
relxp | ⊢ Rel (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss 5605 | . 2 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | |
2 | df-rel 5596 | . 2 ⊢ (Rel (𝐴 × 𝐵) ↔ (𝐴 × 𝐵) ⊆ (V × V)) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ Rel (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3432 ⊆ wss 3887 × cxp 5587 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-opab 5137 df-xp 5595 df-rel 5596 |
This theorem is referenced by: xpsspw 5719 relinxp 5724 xpiindi 5744 eliunxp 5746 opeliunxp2 5747 relres 5920 restidsing 5962 codir 6025 qfto 6026 difxp 6067 sofld 6090 cnvcnv 6095 dfco2 6149 unixp 6185 ressn 6188 fliftcnv 7182 fliftfun 7183 oprssdm 7453 frxp 7967 opeliunxp2f 8026 reltpos 8047 tposfo 8069 tposf 8070 swoer 8528 xpider 8577 xpcomf1o 8848 fpwwe2lem8 10394 ordpinq 10699 addassnq 10714 mulassnq 10715 distrnq 10717 mulidnq 10719 recmulnq 10720 ltexnq 10731 prcdnq 10749 ltrel 11037 lerel 11039 dfle2 12881 fsumcom2 15486 fprodcom2 15694 0rest 17140 firest 17143 2oppchomf 17435 isinv 17472 invsym2 17475 invfun 17476 oppcsect2 17491 oppcinv 17492 oppchofcl 17978 oyoncl 17988 clatl 18226 gicer 18892 gsum2d2lem 19574 gsum2d2 19575 gsumcom2 19576 gsumxp 19577 dprd2d2 19647 mattpostpos 21603 mdetunilem9 21769 restbas 22309 txuni2 22716 txcls 22755 txdis1cn 22786 txkgen 22803 hmpher 22935 cnextrel 23214 tgphaus 23268 qustgplem 23272 tsmsxp 23306 utop2nei 23402 utop3cls 23403 xmeter 23586 caubl 24472 ovoliunlem1 24666 reldv 25034 taylf 25520 lgsquadlem1 26528 lgsquadlem2 26529 nvrel 28964 dfcnv2 31013 gsumpart 31315 qusxpid 31559 qtophaus 31786 cvmliftlem1 33247 cvmlift2lem12 33276 gonan0 33354 xpab 33677 dfso2 33722 frxp2 33791 frxp3 33797 relbigcup 34199 poimirlem3 35780 heicant 35812 vvdifopab 36399 dvhopellsm 39131 dibvalrel 39177 dib1dim 39179 diclspsn 39208 dih1 39300 dih1dimatlem 39343 aoprssdm 44694 eliunxp2 45669 joindm2 46262 meetdm2 46264 |
Copyright terms: Public domain | W3C validator |