![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relxp | Structured version Visualization version GIF version |
Description: A Cartesian product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
relxp | ⊢ Rel (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss 5704 | . 2 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | |
2 | df-rel 5695 | . 2 ⊢ (Rel (𝐴 × 𝐵) ↔ (𝐴 × 𝐵) ⊆ (V × V)) | |
3 | 1, 2 | mpbir 231 | 1 ⊢ Rel (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3477 ⊆ wss 3962 × cxp 5686 Rel wrel 5693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-ss 3979 df-opab 5210 df-xp 5694 df-rel 5695 |
This theorem is referenced by: xpsspw 5821 relinxp 5826 inxp 5844 xpiindi 5848 eliunxp 5850 opeliunxp2 5851 relres 6025 restidsing 6072 codir 6142 qfto 6143 difxp 6185 sofld 6208 cnvcnv 6213 dfco2 6266 unixp 6303 ressn 6306 fliftcnv 7330 fliftfun 7331 oprssdm 7613 frxp 8149 frxp2 8167 frxp3 8174 opeliunxp2f 8233 reltpos 8254 tposfo 8276 tposf 8277 swoer 8774 xpider 8826 xpcomf1o 9099 fpwwe2lem8 10675 ordpinq 10980 addassnq 10995 mulassnq 10996 distrnq 10998 mulidnq 11000 recmulnq 11001 ltexnq 11012 prcdnq 11030 ltrel 11320 lerel 11322 dfle2 13185 fsumcom2 15806 fprodcom2 16016 0rest 17475 firest 17478 2oppchomf 17770 isinv 17807 invsym2 17810 invfun 17811 oppcsect2 17826 oppcinv 17827 oppchofcl 18316 oyoncl 18326 clatl 18565 gicer 19307 gsum2d2lem 20005 gsum2d2 20006 gsumcom2 20007 gsumxp 20008 dprd2d2 20078 mattpostpos 22475 mdetunilem9 22641 restbas 23181 txuni2 23588 txcls 23627 txdis1cn 23658 txkgen 23675 hmpher 23807 cnextrel 24086 tgphaus 24140 qustgplem 24144 tsmsxp 24178 utop2nei 24274 utop3cls 24275 xmeter 24458 caubl 25355 ovoliunlem1 25550 reldv 25919 taylf 26416 lgsquadlem1 27438 lgsquadlem2 27439 noseqrdgfn 28326 nvrel 30630 dfcnv2 32692 gsumpart 33042 gsumwrd2dccat 33052 qusxpid 33370 opprabs 33489 qtophaus 33796 cvmliftlem1 35269 cvmlift2lem12 35298 gonan0 35376 xpab 35705 dfso2 35734 relbigcup 35878 poimirlem3 37609 heicant 37641 vvdifopab 38241 cnvref4 38331 dvhopellsm 41099 dibvalrel 41145 dib1dim 41147 diclspsn 41176 dih1 41268 dih1dimatlem 41311 aoprssdm 47151 gricrel 47825 grlicrel 47901 eliunxp2 48178 joindm2 48764 meetdm2 48766 |
Copyright terms: Public domain | W3C validator |