| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relxp | Structured version Visualization version GIF version | ||
| Description: A Cartesian product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| relxp | ⊢ Rel (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss 5654 | . 2 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | |
| 2 | df-rel 5645 | . 2 ⊢ (Rel (𝐴 × 𝐵) ↔ (𝐴 × 𝐵) ⊆ (V × V)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ Rel (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3447 ⊆ wss 3914 × cxp 5636 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-opab 5170 df-xp 5644 df-rel 5645 |
| This theorem is referenced by: xpsspw 5772 relinxp 5777 inxp 5795 xpiindi 5799 eliunxp 5801 opeliunxp2 5802 relres 5976 restidsing 6024 codir 6093 qfto 6094 difxp 6137 sofld 6160 cnvcnv 6165 dfco2 6218 unixp 6255 ressn 6258 fliftcnv 7286 fliftfun 7287 oprssdm 7570 frxp 8105 frxp2 8123 frxp3 8130 opeliunxp2f 8189 reltpos 8210 tposfo 8232 tposf 8233 swoer 8702 xpider 8761 xpcomf1o 9030 fpwwe2lem8 10591 ordpinq 10896 addassnq 10911 mulassnq 10912 distrnq 10914 mulidnq 10916 recmulnq 10917 ltexnq 10928 prcdnq 10946 ltrel 11236 lerel 11238 dfle2 13107 fsumcom2 15740 fprodcom2 15950 0rest 17392 firest 17395 2oppchomf 17685 isinv 17722 invsym2 17725 invfun 17726 oppcsect2 17741 oppcinv 17742 oppchofcl 18221 oyoncl 18231 clatl 18467 gicer 19209 gsum2d2lem 19903 gsum2d2 19904 gsumcom2 19905 gsumxp 19906 dprd2d2 19976 mattpostpos 22341 mdetunilem9 22507 restbas 23045 txuni2 23452 txcls 23491 txdis1cn 23522 txkgen 23539 hmpher 23671 cnextrel 23950 tgphaus 24004 qustgplem 24008 tsmsxp 24042 utop2nei 24138 utop3cls 24139 xmeter 24321 caubl 25208 ovoliunlem1 25403 reldv 25771 taylf 26268 lgsquadlem1 27291 lgsquadlem2 27292 noseqrdgfn 28200 nvrel 30531 dfcnv2 32600 gsumpart 32997 gsumwrd2dccat 33007 elrgspnsubrunlem2 33199 qusxpid 33334 opprabs 33453 qtophaus 33826 cvmliftlem1 35272 cvmlift2lem12 35301 gonan0 35379 xpab 35713 dfso2 35742 relbigcup 35885 poimirlem3 37617 heicant 37649 vvdifopab 38249 cnvref4 38332 dvhopellsm 41111 dibvalrel 41157 dib1dim 41159 diclspsn 41188 dih1 41280 dih1dimatlem 41323 aoprssdm 47203 gricrel 47919 grlicrel 47998 eliunxp2 48322 iinxp 48819 coxp 48821 xpco2 48845 tposresxp 48871 tposf1o 48872 tposideq2 48877 joindm2 48956 meetdm2 48958 oppfvallem 49124 funcoppc3 49136 uptposlem 49186 reldmxpc 49235 |
| Copyright terms: Public domain | W3C validator |