| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relxp | Structured version Visualization version GIF version | ||
| Description: A Cartesian product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| relxp | ⊢ Rel (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss 5637 | . 2 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | |
| 2 | df-rel 5628 | . 2 ⊢ (Rel (𝐴 × 𝐵) ↔ (𝐴 × 𝐵) ⊆ (V × V)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ Rel (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3437 ⊆ wss 3898 × cxp 5619 Rel wrel 5626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-opab 5158 df-xp 5627 df-rel 5628 |
| This theorem is referenced by: xpsspw 5755 relinxp 5760 inxp 5777 xpiindi 5781 eliunxp 5783 opeliunxp2 5784 relres 5960 restidsing 6008 codir 6073 qfto 6074 difxp 6118 sofld 6141 cnvcnv 6146 dfco2 6199 unixp 6236 ressn 6239 fliftcnv 7253 fliftfun 7254 oprssdm 7535 frxp 8064 frxp2 8082 frxp3 8089 opeliunxp2f 8148 reltpos 8169 tposfo 8191 tposf 8192 swoer 8661 xpider 8720 xpcomf1o 8988 fpwwe2lem8 10538 ordpinq 10843 addassnq 10858 mulassnq 10859 distrnq 10861 mulidnq 10863 recmulnq 10864 ltexnq 10875 prcdnq 10893 ltrel 11183 lerel 11185 dfle2 13050 fsumcom2 15685 fprodcom2 15895 0rest 17337 firest 17340 2oppchomf 17634 isinv 17671 invsym2 17674 invfun 17675 oppcsect2 17690 oppcinv 17691 oppchofcl 18170 oyoncl 18180 clatl 18418 gicer 19193 gsum2d2lem 19889 gsum2d2 19890 gsumcom2 19891 gsumxp 19892 dprd2d2 19962 mattpostpos 22372 mdetunilem9 22538 restbas 23076 txuni2 23483 txcls 23522 txdis1cn 23553 txkgen 23570 hmpher 23702 cnextrel 23981 tgphaus 24035 qustgplem 24039 tsmsxp 24073 utop2nei 24168 utop3cls 24169 xmeter 24351 caubl 25238 ovoliunlem1 25433 reldv 25801 taylf 26298 lgsquadlem1 27321 lgsquadlem2 27322 noseqrdgfn 28239 nvrel 30586 dfcnv2 32662 gsumpart 33046 gsumwrd2dccat 33056 elrgspnsubrunlem2 33224 qusxpid 33337 opprabs 33456 qtophaus 33872 cvmliftlem1 35352 cvmlift2lem12 35381 gonan0 35459 xpab 35793 dfso2 35822 relbigcup 35962 poimirlem3 37686 heicant 37718 vvdifopab 38320 cnvref4 38405 ecxrn2 38455 dvhopellsm 41239 dibvalrel 41285 dib1dim 41287 diclspsn 41316 dih1 41408 dih1dimatlem 41451 aoprssdm 47329 gricrel 48046 grlicrel 48133 eliunxp2 48461 iinxp 48958 coxp 48960 xpco2 48984 tposresxp 49010 tposf1o 49011 tposideq2 49016 joindm2 49095 meetdm2 49097 oppfvallem 49263 funcoppc3 49275 uptposlem 49325 reldmxpc 49374 |
| Copyright terms: Public domain | W3C validator |