Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relxp | Structured version Visualization version GIF version |
Description: A Cartesian product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
relxp | ⊢ Rel (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss 5540 | . 2 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | |
2 | df-rel 5531 | . 2 ⊢ (Rel (𝐴 × 𝐵) ↔ (𝐴 × 𝐵) ⊆ (V × V)) | |
3 | 1, 2 | mpbir 234 | 1 ⊢ Rel (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3409 ⊆ wss 3858 × cxp 5522 Rel wrel 5529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3865 df-ss 3875 df-opab 5095 df-xp 5530 df-rel 5531 |
This theorem is referenced by: xpsspw 5651 relinxp 5656 xpiindi 5675 eliunxp 5677 opeliunxp2 5678 relres 5852 restidsing 5894 codir 5952 qfto 5953 difxp 5993 sofld 6016 cnvcnv 6021 dfco2 6075 unixp 6111 ressn 6114 fliftcnv 7058 fliftfun 7059 oprssdm 7325 frxp 7825 opeliunxp2f 7886 reltpos 7907 tposfo 7929 tposf 7930 swoer 8329 xpider 8378 xpcomf1o 8627 fpwwe2lem8 10098 ordpinq 10403 addassnq 10418 mulassnq 10419 distrnq 10421 mulidnq 10423 recmulnq 10424 ltexnq 10435 prcdnq 10453 ltrel 10741 lerel 10743 dfle2 12581 fsumcom2 15177 fprodcom2 15386 0rest 16761 firest 16764 2oppchomf 17052 isinv 17089 invsym2 17092 invfun 17093 oppcsect2 17108 oppcinv 17109 oppchofcl 17576 oyoncl 17586 clatl 17792 gicer 18483 gsum2d2lem 19161 gsum2d2 19162 gsumcom2 19163 gsumxp 19164 dprd2d2 19234 mattpostpos 21154 mdetunilem9 21320 restbas 21858 txuni2 22265 txcls 22304 txdis1cn 22335 txkgen 22352 hmpher 22484 cnextrel 22763 tgphaus 22817 qustgplem 22821 tsmsxp 22855 utop2nei 22951 utop3cls 22952 xmeter 23135 caubl 24008 ovoliunlem1 24202 reldv 24569 taylf 25055 lgsquadlem1 26063 lgsquadlem2 26064 nvrel 28484 dfcnv2 30537 gsumpart 30841 qusxpid 31080 qtophaus 31307 cvmliftlem1 32763 cvmlift2lem12 32792 gonan0 32870 xpab 33195 dfso2 33237 frxp2 33346 frxp3 33352 relbigcup 33748 poimirlem3 35340 heicant 35372 vvdifopab 35961 dvhopellsm 38693 dibvalrel 38739 dib1dim 38741 diclspsn 38770 dih1 38862 dih1dimatlem 38905 aoprssdm 44126 eliunxp2 45102 |
Copyright terms: Public domain | W3C validator |