![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relxp | Structured version Visualization version GIF version |
Description: A Cartesian product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
relxp | ⊢ Rel (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss 5716 | . 2 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | |
2 | df-rel 5707 | . 2 ⊢ (Rel (𝐴 × 𝐵) ↔ (𝐴 × 𝐵) ⊆ (V × V)) | |
3 | 1, 2 | mpbir 231 | 1 ⊢ Rel (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3488 ⊆ wss 3976 × cxp 5698 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-xp 5706 df-rel 5707 |
This theorem is referenced by: xpsspw 5833 relinxp 5838 inxp 5856 xpiindi 5860 eliunxp 5862 opeliunxp2 5863 relres 6035 restidsing 6082 codir 6152 qfto 6153 difxp 6195 sofld 6218 cnvcnv 6223 dfco2 6276 unixp 6313 ressn 6316 fliftcnv 7347 fliftfun 7348 oprssdm 7631 frxp 8167 frxp2 8185 frxp3 8192 opeliunxp2f 8251 reltpos 8272 tposfo 8294 tposf 8295 swoer 8794 xpider 8846 xpcomf1o 9127 fpwwe2lem8 10707 ordpinq 11012 addassnq 11027 mulassnq 11028 distrnq 11030 mulidnq 11032 recmulnq 11033 ltexnq 11044 prcdnq 11062 ltrel 11352 lerel 11354 dfle2 13209 fsumcom2 15822 fprodcom2 16032 0rest 17489 firest 17492 2oppchomf 17784 isinv 17821 invsym2 17824 invfun 17825 oppcsect2 17840 oppcinv 17841 oppchofcl 18330 oyoncl 18340 clatl 18578 gicer 19317 gsum2d2lem 20015 gsum2d2 20016 gsumcom2 20017 gsumxp 20018 dprd2d2 20088 mattpostpos 22481 mdetunilem9 22647 restbas 23187 txuni2 23594 txcls 23633 txdis1cn 23664 txkgen 23681 hmpher 23813 cnextrel 24092 tgphaus 24146 qustgplem 24150 tsmsxp 24184 utop2nei 24280 utop3cls 24281 xmeter 24464 caubl 25361 ovoliunlem1 25556 reldv 25925 taylf 26420 lgsquadlem1 27442 lgsquadlem2 27443 noseqrdgfn 28330 nvrel 30634 dfcnv2 32694 gsumpart 33038 qusxpid 33356 opprabs 33475 qtophaus 33782 cvmliftlem1 35253 cvmlift2lem12 35282 gonan0 35360 xpab 35688 dfso2 35717 relbigcup 35861 poimirlem3 37583 heicant 37615 vvdifopab 38216 cnvref4 38306 dvhopellsm 41074 dibvalrel 41120 dib1dim 41122 diclspsn 41151 dih1 41243 dih1dimatlem 41286 aoprssdm 47117 gricrel 47772 grlicrel 47823 eliunxp2 48058 joindm2 48648 meetdm2 48650 |
Copyright terms: Public domain | W3C validator |