| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relxp | Structured version Visualization version GIF version | ||
| Description: A Cartesian product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| relxp | ⊢ Rel (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss 5639 | . 2 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | |
| 2 | df-rel 5630 | . 2 ⊢ (Rel (𝐴 × 𝐵) ↔ (𝐴 × 𝐵) ⊆ (V × V)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ Rel (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3438 ⊆ wss 3905 × cxp 5621 Rel wrel 5628 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-ss 3922 df-opab 5158 df-xp 5629 df-rel 5630 |
| This theorem is referenced by: xpsspw 5756 relinxp 5761 inxp 5778 xpiindi 5782 eliunxp 5784 opeliunxp2 5785 relres 5960 restidsing 6008 codir 6073 qfto 6074 difxp 6117 sofld 6140 cnvcnv 6145 dfco2 6198 unixp 6234 ressn 6237 fliftcnv 7252 fliftfun 7253 oprssdm 7534 frxp 8066 frxp2 8084 frxp3 8091 opeliunxp2f 8150 reltpos 8171 tposfo 8193 tposf 8194 swoer 8663 xpider 8722 xpcomf1o 8990 fpwwe2lem8 10551 ordpinq 10856 addassnq 10871 mulassnq 10872 distrnq 10874 mulidnq 10876 recmulnq 10877 ltexnq 10888 prcdnq 10906 ltrel 11196 lerel 11198 dfle2 13067 fsumcom2 15699 fprodcom2 15909 0rest 17351 firest 17354 2oppchomf 17648 isinv 17685 invsym2 17688 invfun 17689 oppcsect2 17704 oppcinv 17705 oppchofcl 18184 oyoncl 18194 clatl 18432 gicer 19174 gsum2d2lem 19870 gsum2d2 19871 gsumcom2 19872 gsumxp 19873 dprd2d2 19943 mattpostpos 22357 mdetunilem9 22523 restbas 23061 txuni2 23468 txcls 23507 txdis1cn 23538 txkgen 23555 hmpher 23687 cnextrel 23966 tgphaus 24020 qustgplem 24024 tsmsxp 24058 utop2nei 24154 utop3cls 24155 xmeter 24337 caubl 25224 ovoliunlem1 25419 reldv 25787 taylf 26284 lgsquadlem1 27307 lgsquadlem2 27308 noseqrdgfn 28223 nvrel 30564 dfcnv2 32633 gsumpart 33023 gsumwrd2dccat 33033 elrgspnsubrunlem2 33201 qusxpid 33313 opprabs 33432 qtophaus 33805 cvmliftlem1 35260 cvmlift2lem12 35289 gonan0 35367 xpab 35701 dfso2 35730 relbigcup 35873 poimirlem3 37605 heicant 37637 vvdifopab 38237 cnvref4 38320 dvhopellsm 41099 dibvalrel 41145 dib1dim 41147 diclspsn 41176 dih1 41268 dih1dimatlem 41311 aoprssdm 47190 gricrel 47907 grlicrel 47994 eliunxp2 48322 iinxp 48819 coxp 48821 xpco2 48845 tposresxp 48871 tposf1o 48872 tposideq2 48877 joindm2 48956 meetdm2 48958 oppfvallem 49124 funcoppc3 49136 uptposlem 49186 reldmxpc 49235 |
| Copyright terms: Public domain | W3C validator |