| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relxp | Structured version Visualization version GIF version | ||
| Description: A Cartesian product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| relxp | ⊢ Rel (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss 5632 | . 2 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | |
| 2 | df-rel 5623 | . 2 ⊢ (Rel (𝐴 × 𝐵) ↔ (𝐴 × 𝐵) ⊆ (V × V)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ Rel (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3436 ⊆ wss 3902 × cxp 5614 Rel wrel 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3919 df-opab 5154 df-xp 5622 df-rel 5623 |
| This theorem is referenced by: xpsspw 5749 relinxp 5754 inxp 5771 xpiindi 5775 eliunxp 5777 opeliunxp2 5778 relres 5954 restidsing 6002 codir 6067 qfto 6068 difxp 6111 sofld 6134 cnvcnv 6139 dfco2 6192 unixp 6229 ressn 6232 fliftcnv 7245 fliftfun 7246 oprssdm 7527 frxp 8056 frxp2 8074 frxp3 8081 opeliunxp2f 8140 reltpos 8161 tposfo 8183 tposf 8184 swoer 8653 xpider 8712 xpcomf1o 8979 fpwwe2lem8 10529 ordpinq 10834 addassnq 10849 mulassnq 10850 distrnq 10852 mulidnq 10854 recmulnq 10855 ltexnq 10866 prcdnq 10884 ltrel 11174 lerel 11176 dfle2 13046 fsumcom2 15681 fprodcom2 15891 0rest 17333 firest 17336 2oppchomf 17630 isinv 17667 invsym2 17670 invfun 17671 oppcsect2 17686 oppcinv 17687 oppchofcl 18166 oyoncl 18176 clatl 18414 gicer 19190 gsum2d2lem 19886 gsum2d2 19887 gsumcom2 19888 gsumxp 19889 dprd2d2 19959 mattpostpos 22370 mdetunilem9 22536 restbas 23074 txuni2 23481 txcls 23520 txdis1cn 23551 txkgen 23568 hmpher 23700 cnextrel 23979 tgphaus 24033 qustgplem 24037 tsmsxp 24071 utop2nei 24166 utop3cls 24167 xmeter 24349 caubl 25236 ovoliunlem1 25431 reldv 25799 taylf 26296 lgsquadlem1 27319 lgsquadlem2 27320 noseqrdgfn 28237 nvrel 30580 dfcnv2 32656 gsumpart 33035 gsumwrd2dccat 33045 elrgspnsubrunlem2 33213 qusxpid 33326 opprabs 33445 qtophaus 33847 cvmliftlem1 35327 cvmlift2lem12 35356 gonan0 35434 xpab 35768 dfso2 35797 relbigcup 35937 poimirlem3 37669 heicant 37701 vvdifopab 38301 cnvref4 38384 dvhopellsm 41162 dibvalrel 41208 dib1dim 41210 diclspsn 41239 dih1 41331 dih1dimatlem 41374 aoprssdm 47239 gricrel 47956 grlicrel 48043 eliunxp2 48371 iinxp 48868 coxp 48870 xpco2 48894 tposresxp 48920 tposf1o 48921 tposideq2 48926 joindm2 49005 meetdm2 49007 oppfvallem 49173 funcoppc3 49185 uptposlem 49235 reldmxpc 49284 |
| Copyright terms: Public domain | W3C validator |