| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relxp | Structured version Visualization version GIF version | ||
| Description: A Cartesian product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| relxp | ⊢ Rel (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss 5657 | . 2 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | |
| 2 | df-rel 5648 | . 2 ⊢ (Rel (𝐴 × 𝐵) ↔ (𝐴 × 𝐵) ⊆ (V × V)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ Rel (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3450 ⊆ wss 3917 × cxp 5639 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-opab 5173 df-xp 5647 df-rel 5648 |
| This theorem is referenced by: xpsspw 5775 relinxp 5780 inxp 5798 xpiindi 5802 eliunxp 5804 opeliunxp2 5805 relres 5979 restidsing 6027 codir 6096 qfto 6097 difxp 6140 sofld 6163 cnvcnv 6168 dfco2 6221 unixp 6258 ressn 6261 fliftcnv 7289 fliftfun 7290 oprssdm 7573 frxp 8108 frxp2 8126 frxp3 8133 opeliunxp2f 8192 reltpos 8213 tposfo 8235 tposf 8236 swoer 8705 xpider 8764 xpcomf1o 9035 fpwwe2lem8 10598 ordpinq 10903 addassnq 10918 mulassnq 10919 distrnq 10921 mulidnq 10923 recmulnq 10924 ltexnq 10935 prcdnq 10953 ltrel 11243 lerel 11245 dfle2 13114 fsumcom2 15747 fprodcom2 15957 0rest 17399 firest 17402 2oppchomf 17692 isinv 17729 invsym2 17732 invfun 17733 oppcsect2 17748 oppcinv 17749 oppchofcl 18228 oyoncl 18238 clatl 18474 gicer 19216 gsum2d2lem 19910 gsum2d2 19911 gsumcom2 19912 gsumxp 19913 dprd2d2 19983 mattpostpos 22348 mdetunilem9 22514 restbas 23052 txuni2 23459 txcls 23498 txdis1cn 23529 txkgen 23546 hmpher 23678 cnextrel 23957 tgphaus 24011 qustgplem 24015 tsmsxp 24049 utop2nei 24145 utop3cls 24146 xmeter 24328 caubl 25215 ovoliunlem1 25410 reldv 25778 taylf 26275 lgsquadlem1 27298 lgsquadlem2 27299 noseqrdgfn 28207 nvrel 30538 dfcnv2 32607 gsumpart 33004 gsumwrd2dccat 33014 elrgspnsubrunlem2 33206 qusxpid 33341 opprabs 33460 qtophaus 33833 cvmliftlem1 35279 cvmlift2lem12 35308 gonan0 35386 xpab 35720 dfso2 35749 relbigcup 35892 poimirlem3 37624 heicant 37656 vvdifopab 38256 cnvref4 38339 dvhopellsm 41118 dibvalrel 41164 dib1dim 41166 diclspsn 41195 dih1 41287 dih1dimatlem 41330 aoprssdm 47207 gricrel 47923 grlicrel 48002 eliunxp2 48326 iinxp 48823 coxp 48825 xpco2 48849 tposresxp 48875 tposf1o 48876 tposideq2 48881 joindm2 48960 meetdm2 48962 oppfvallem 49128 funcoppc3 49140 uptposlem 49190 reldmxpc 49239 |
| Copyright terms: Public domain | W3C validator |