| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relxp | Structured version Visualization version GIF version | ||
| Description: A Cartesian product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| relxp | ⊢ Rel (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss 5670 | . 2 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | |
| 2 | df-rel 5661 | . 2 ⊢ (Rel (𝐴 × 𝐵) ↔ (𝐴 × 𝐵) ⊆ (V × V)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ Rel (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3459 ⊆ wss 3926 × cxp 5652 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-opab 5182 df-xp 5660 df-rel 5661 |
| This theorem is referenced by: xpsspw 5788 relinxp 5793 inxp 5811 xpiindi 5815 eliunxp 5817 opeliunxp2 5818 relres 5992 restidsing 6040 codir 6109 qfto 6110 difxp 6153 sofld 6176 cnvcnv 6181 dfco2 6234 unixp 6271 ressn 6274 fliftcnv 7304 fliftfun 7305 oprssdm 7588 frxp 8125 frxp2 8143 frxp3 8150 opeliunxp2f 8209 reltpos 8230 tposfo 8252 tposf 8253 swoer 8750 xpider 8802 xpcomf1o 9075 fpwwe2lem8 10652 ordpinq 10957 addassnq 10972 mulassnq 10973 distrnq 10975 mulidnq 10977 recmulnq 10978 ltexnq 10989 prcdnq 11007 ltrel 11297 lerel 11299 dfle2 13163 fsumcom2 15790 fprodcom2 16000 0rest 17443 firest 17446 2oppchomf 17736 isinv 17773 invsym2 17776 invfun 17777 oppcsect2 17792 oppcinv 17793 oppchofcl 18272 oyoncl 18282 clatl 18518 gicer 19260 gsum2d2lem 19954 gsum2d2 19955 gsumcom2 19956 gsumxp 19957 dprd2d2 20027 mattpostpos 22392 mdetunilem9 22558 restbas 23096 txuni2 23503 txcls 23542 txdis1cn 23573 txkgen 23590 hmpher 23722 cnextrel 24001 tgphaus 24055 qustgplem 24059 tsmsxp 24093 utop2nei 24189 utop3cls 24190 xmeter 24372 caubl 25260 ovoliunlem1 25455 reldv 25823 taylf 26320 lgsquadlem1 27343 lgsquadlem2 27344 noseqrdgfn 28252 nvrel 30583 dfcnv2 32654 gsumpart 33051 gsumwrd2dccat 33061 elrgspnsubrunlem2 33243 qusxpid 33378 opprabs 33497 qtophaus 33867 cvmliftlem1 35307 cvmlift2lem12 35336 gonan0 35414 xpab 35743 dfso2 35772 relbigcup 35915 poimirlem3 37647 heicant 37679 vvdifopab 38278 cnvref4 38368 dvhopellsm 41136 dibvalrel 41182 dib1dim 41184 diclspsn 41213 dih1 41305 dih1dimatlem 41348 aoprssdm 47231 gricrel 47932 grlicrel 48011 eliunxp2 48309 iinxp 48809 coxp 48811 tposresxp 48858 tposf1o 48859 tposideq2 48864 joindm2 48942 meetdm2 48944 oppfvallem 49081 funcoppc3 49090 uptposlem 49130 reldmxpc 49163 |
| Copyright terms: Public domain | W3C validator |