Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-brab2a1 Structured version   Visualization version   GIF version

Theorem bj-brab2a1 36520
Description: "Unbounded" version of brab2a 5759. (Contributed by BJ, 25-Dec-2023.)
Hypotheses
Ref Expression
bj-brab2a1.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
bj-brab2a1.2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
bj-brab2a1 (𝐴𝑅𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem bj-brab2a1
StepHypRef Expression
1 bj-brab2a1.1 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
2 bj-brab2a1.2 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
3 vex 3470 . . . . . 6 𝑥 ∈ V
4 vex 3470 . . . . . 6 𝑦 ∈ V
53, 4pm3.2i 470 . . . . 5 (𝑥 ∈ V ∧ 𝑦 ∈ V)
65biantrur 530 . . . 4 (𝜑 ↔ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝜑))
76opabbii 5205 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝜑)}
82, 7eqtri 2752 . 2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝜑)}
91, 8brab2a 5759 1 (𝐴𝑅𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  Vcvv 3466   class class class wbr 5138  {copab 5200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-xp 5672
This theorem is referenced by:  bj-ideqg1  36535
  Copyright terms: Public domain W3C validator