| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-brab2a1 | Structured version Visualization version GIF version | ||
| Description: "Unbounded" version of brab2a 5761. (Contributed by BJ, 25-Dec-2023.) |
| Ref | Expression |
|---|---|
| bj-brab2a1.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
| bj-brab2a1.2 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| bj-brab2a1 | ⊢ (𝐴𝑅𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-brab2a1.1 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
| 2 | bj-brab2a1.2 | . . 3 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 3 | vex 3468 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 4 | vex 3468 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 5 | 3, 4 | pm3.2i 470 | . . . . 5 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
| 6 | 5 | biantrur 530 | . . . 4 ⊢ (𝜑 ↔ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝜑)) |
| 7 | 6 | opabbii 5192 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝜑)} |
| 8 | 2, 7 | eqtri 2757 | . 2 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝜑)} |
| 9 | 1, 8 | brab2a 5761 | 1 ⊢ (𝐴𝑅𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3464 class class class wbr 5125 {copab 5187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-xp 5673 |
| This theorem is referenced by: bj-ideqg1 37102 |
| Copyright terms: Public domain | W3C validator |