![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-brab2a1 | Structured version Visualization version GIF version |
Description: "Unbounded" version of brab2a 5782. (Contributed by BJ, 25-Dec-2023.) |
Ref | Expression |
---|---|
bj-brab2a1.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
bj-brab2a1.2 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
bj-brab2a1 | ⊢ (𝐴𝑅𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-brab2a1.1 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
2 | bj-brab2a1.2 | . . 3 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
3 | vex 3482 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | vex 3482 | . . . . . 6 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | pm3.2i 470 | . . . . 5 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
6 | 5 | biantrur 530 | . . . 4 ⊢ (𝜑 ↔ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝜑)) |
7 | 6 | opabbii 5215 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝜑)} |
8 | 2, 7 | eqtri 2763 | . 2 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝜑)} |
9 | 1, 8 | brab2a 5782 | 1 ⊢ (𝐴𝑅𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 class class class wbr 5148 {copab 5210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 |
This theorem is referenced by: bj-ideqg1 37147 |
Copyright terms: Public domain | W3C validator |