Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-brab2a1 Structured version   Visualization version   GIF version

Theorem bj-brab2a1 37087
Description: "Unbounded" version of brab2a 5761. (Contributed by BJ, 25-Dec-2023.)
Hypotheses
Ref Expression
bj-brab2a1.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
bj-brab2a1.2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
bj-brab2a1 (𝐴𝑅𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem bj-brab2a1
StepHypRef Expression
1 bj-brab2a1.1 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
2 bj-brab2a1.2 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
3 vex 3468 . . . . . 6 𝑥 ∈ V
4 vex 3468 . . . . . 6 𝑦 ∈ V
53, 4pm3.2i 470 . . . . 5 (𝑥 ∈ V ∧ 𝑦 ∈ V)
65biantrur 530 . . . 4 (𝜑 ↔ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝜑))
76opabbii 5192 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝜑)}
82, 7eqtri 2757 . 2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝜑)}
91, 8brab2a 5761 1 (𝐴𝑅𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  Vcvv 3464   class class class wbr 5125  {copab 5187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-br 5126  df-opab 5188  df-xp 5673
This theorem is referenced by:  bj-ideqg1  37102
  Copyright terms: Public domain W3C validator