Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-funidres Structured version   Visualization version   GIF version

Theorem bj-funidres 37093
Description: The restricted identity relation is a function. (Contributed by BJ, 27-Dec-2023.)

TODO: relabel funi 6579 to funid.

Assertion
Ref Expression
bj-funidres Fun ( I ↾ 𝑉)

Proof of Theorem bj-funidres
StepHypRef Expression
1 funi 6579 . 2 Fun I
2 funres 6589 . 2 (Fun I → Fun ( I ↾ 𝑉))
31, 2ax-mp 5 1 Fun ( I ↾ 𝑉)
Colors of variables: wff setvar class
Syntax hints:   I cid 5559  cres 5669  Fun wfun 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-br 5126  df-opab 5188  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-res 5679  df-fun 6544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator