| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeltrrdi | Structured version Visualization version GIF version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqeltrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| eqeltrrdi.2 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltrrdi | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2737 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | eqeltrrdi.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 4 | 2, 3 | eqeltrdi 2839 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: axrep6g 5226 snexg 5371 wemoiso2 7906 releldm2 7975 mapprc 8754 mapfoss 8776 ixpprc 8843 bren 8879 brdomg 8881 domssex 9051 mapen 9054 ssenen 9064 imafiOLD 9200 fodomfib 9213 fodomfibOLD 9215 fi0 9304 dffi3 9315 brwdom 9453 brwdomn0 9455 unxpwdom2 9474 ixpiunwdom 9476 tcmin 9629 rankonid 9722 rankr1id 9755 cardf2 9836 cardid2 9846 carduni 9874 fseqen 9918 acndom 9942 acndom2 9945 alephnbtwn 9962 cardcf 10143 cfeq0 10147 cflim2 10154 coftr 10164 infpssr 10199 hsmexlem5 10321 axdc3lem4 10344 fodomb 10417 ondomon 10454 gruina 10709 ioof 13347 hashbc 14360 trclun 14921 zsum 15625 fsum 15627 fprod 15848 eqgen 19093 symgfisg 19380 dvdsr 20280 asplss 21811 aspsubrg 21813 psrval 21852 clsf 22963 restco 23079 subbascn 23169 is2ndc 23361 ptbasin2 23493 ptbas 23494 indishmph 23713 ufldom 23877 cnextfres1 23983 ussid 24175 icopnfcld 24682 cnrehmeo 24878 cnrehmeoOLD 24879 csscld 25176 clsocv 25177 itg2gt0 25688 dvmptadd 25891 dvmptmul 25892 dvmptco 25903 logcn 26583 selberglem1 27483 noseq0 28220 hmopidmchi 32131 evl1deg2 33540 sigagensiga 34154 dya2iocbrsiga 34288 dya2icobrsiga 34289 logdivsqrle 34663 fnessref 36401 bj-snexg 37078 bj-unexg 37082 unirep 37764 indexdom 37784 dicfnN 41292 pwslnmlem0 43194 mendval 43282 orbitinit 45059 icof 45326 dvsubf 46022 dvdivf 46030 itgsinexplem1 46062 stirlinglem7 46188 fourierdlem73 46287 fouriersw 46339 ovolval4lem1 46757 lamberte 46998 i0oii 49030 io1ii 49031 2arwcatlem4 49709 2arwcat 49711 |
| Copyright terms: Public domain | W3C validator |