| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeltrrdi | Structured version Visualization version GIF version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqeltrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| eqeltrrdi.2 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltrrdi | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2735 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | eqeltrrdi.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 4 | 2, 3 | eqeltrdi 2836 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: axrep6g 5229 snexg 5374 wemoiso2 7909 releldm2 7978 mapprc 8757 mapfoss 8779 ixpprc 8846 bren 8882 brdomg 8884 domssex 9055 mapen 9058 ssenen 9068 imafiOLD 9205 fodomfib 9219 fodomfibOLD 9221 fi0 9310 dffi3 9321 brwdom 9459 brwdomn0 9461 unxpwdom2 9480 ixpiunwdom 9482 tcmin 9637 rankonid 9725 rankr1id 9758 cardf2 9839 cardid2 9849 carduni 9877 fseqen 9921 acndom 9945 acndom2 9948 alephnbtwn 9965 cardcf 10146 cfeq0 10150 cflim2 10157 coftr 10167 infpssr 10202 hsmexlem5 10324 axdc3lem4 10347 fodomb 10420 ondomon 10457 gruina 10712 ioof 13350 hashbc 14360 trclun 14921 zsum 15625 fsum 15627 fprod 15848 eqgen 19060 symgfisg 19347 dvdsr 20247 asplss 21781 aspsubrg 21783 psrval 21822 clsf 22933 restco 23049 subbascn 23139 is2ndc 23331 ptbasin2 23463 ptbas 23464 indishmph 23683 ufldom 23847 cnextfres1 23953 ussid 24146 icopnfcld 24653 cnrehmeo 24849 cnrehmeoOLD 24850 csscld 25147 clsocv 25148 itg2gt0 25659 dvmptadd 25862 dvmptmul 25863 dvmptco 25874 logcn 26554 selberglem1 27454 noseq0 28189 hmopidmchi 32095 evl1deg2 33513 sigagensiga 34114 dya2iocbrsiga 34249 dya2icobrsiga 34250 logdivsqrle 34624 fnessref 36341 bj-snexg 37018 bj-unexg 37022 unirep 37704 indexdom 37724 dicfnN 41172 pwslnmlem0 43074 mendval 43162 orbitinit 44940 icof 45207 dvsubf 45905 dvdivf 45913 itgsinexplem1 45945 stirlinglem7 46071 fourierdlem73 46170 fouriersw 46222 ovolval4lem1 46640 lamberte 46882 i0oii 48914 io1ii 48915 2arwcatlem4 49593 2arwcat 49595 |
| Copyright terms: Public domain | W3C validator |