Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqeltrrdi | Structured version Visualization version GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eqeltrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
eqeltrrdi.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
eqeltrrdi | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2746 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | eqeltrrdi.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
4 | 2, 3 | eqeltrdi 2849 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 df-cleq 2732 df-clel 2818 |
This theorem is referenced by: wemoiso2 7810 releldm2 7877 mapprc 8602 mapfoss 8623 ixpprc 8690 bren 8726 brenOLD 8727 brdomg 8729 brdomgOLD 8730 domssex 8907 mapen 8910 ssenen 8920 imafi 8940 fodomfib 9071 fi0 9157 dffi3 9168 brwdom 9304 brwdomn0 9306 unxpwdom2 9325 ixpiunwdom 9327 tcmin 9499 rankonid 9588 rankr1id 9621 cardf2 9702 cardid2 9712 carduni 9740 fseqen 9784 acndom 9808 acndom2 9811 alephnbtwn 9828 cardcf 10009 cfeq0 10013 cflim2 10020 coftr 10030 infpssr 10065 hsmexlem5 10187 axdc3lem4 10210 fodomb 10283 ondomon 10320 gruina 10575 ioof 13178 hashbc 14163 hashfacenOLD 14165 trclun 14723 zsum 15428 fsum 15430 fprod 15649 eqgen 18807 symgfisg 19074 dvdsr 19886 asplss 21076 aspsubrg 21078 psrval 21116 clsf 22197 restco 22313 subbascn 22403 is2ndc 22595 ptbasin2 22727 ptbas 22728 indishmph 22947 ufldom 23111 cnextfres1 23217 ussid 23410 icopnfcld 23929 cnrehmeo 24114 csscld 24411 clsocv 24412 itg2gt0 24923 dvmptadd 25122 dvmptmul 25123 dvmptco 25134 logcn 25800 selberglem1 26691 hmopidmchi 30509 sigagensiga 32105 dya2iocbrsiga 32238 dya2icobrsiga 32239 logdivsqrle 32626 fnessref 34542 unirep 35867 indexdom 35888 dicfnN 39193 pwslnmlem0 40913 mendval 41005 icof 42729 dvsubf 43426 dvdivf 43434 itgsinexplem1 43466 stirlinglem7 43592 fourierdlem73 43691 fouriersw 43743 ovolval4lem1 44158 i0oii 46182 io1ii 46183 |
Copyright terms: Public domain | W3C validator |