![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqeltrrdi | Structured version Visualization version GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eqeltrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
eqeltrrdi.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
eqeltrrdi | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2746 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | eqeltrrdi.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
4 | 2, 3 | eqeltrdi 2852 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: axrep6g 5311 snexg 5450 wemoiso2 8015 releldm2 8084 mapprc 8888 mapfoss 8910 ixpprc 8977 bren 9013 brenOLD 9014 brdomg 9016 brdomgOLD 9017 domssex 9204 mapen 9207 ssenen 9217 imafiOLD 9382 fodomfib 9397 fodomfibOLD 9399 fi0 9489 dffi3 9500 brwdom 9636 brwdomn0 9638 unxpwdom2 9657 ixpiunwdom 9659 tcmin 9810 rankonid 9898 rankr1id 9931 cardf2 10012 cardid2 10022 carduni 10050 fseqen 10096 acndom 10120 acndom2 10123 alephnbtwn 10140 cardcf 10321 cfeq0 10325 cflim2 10332 coftr 10342 infpssr 10377 hsmexlem5 10499 axdc3lem4 10522 fodomb 10595 ondomon 10632 gruina 10887 ioof 13507 hashbc 14502 trclun 15063 zsum 15766 fsum 15768 fprod 15989 eqgen 19221 symgfisg 19510 dvdsr 20388 asplss 21917 aspsubrg 21919 psrval 21958 clsf 23077 restco 23193 subbascn 23283 is2ndc 23475 ptbasin2 23607 ptbas 23608 indishmph 23827 ufldom 23991 cnextfres1 24097 ussid 24290 icopnfcld 24809 cnrehmeo 25003 cnrehmeoOLD 25004 csscld 25302 clsocv 25303 itg2gt0 25815 dvmptadd 26018 dvmptmul 26019 dvmptco 26030 logcn 26707 selberglem1 27607 noseq0 28314 hmopidmchi 32183 evl1deg2 33567 sigagensiga 34105 dya2iocbrsiga 34240 dya2icobrsiga 34241 logdivsqrle 34627 fnessref 36323 bj-snexg 37000 bj-unexg 37004 unirep 37674 indexdom 37694 dicfnN 41140 pwslnmlem0 43048 mendval 43140 icof 45126 dvsubf 45835 dvdivf 45843 itgsinexplem1 45875 stirlinglem7 46001 fourierdlem73 46100 fouriersw 46152 ovolval4lem1 46570 i0oii 48599 io1ii 48600 |
Copyright terms: Public domain | W3C validator |