| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeltrrdi | Structured version Visualization version GIF version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqeltrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| eqeltrrdi.2 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltrrdi | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2741 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | eqeltrrdi.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 4 | 2, 3 | eqeltrdi 2842 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-clel 2809 |
| This theorem is referenced by: axrep6g 5260 snexg 5405 wemoiso2 7973 releldm2 8042 mapprc 8844 mapfoss 8866 ixpprc 8933 bren 8969 brdomg 8971 brdomgOLD 8972 domssex 9152 mapen 9155 ssenen 9165 imafiOLD 9326 fodomfib 9341 fodomfibOLD 9343 fi0 9432 dffi3 9443 brwdom 9581 brwdomn0 9583 unxpwdom2 9602 ixpiunwdom 9604 tcmin 9755 rankonid 9843 rankr1id 9876 cardf2 9957 cardid2 9967 carduni 9995 fseqen 10041 acndom 10065 acndom2 10068 alephnbtwn 10085 cardcf 10266 cfeq0 10270 cflim2 10277 coftr 10287 infpssr 10322 hsmexlem5 10444 axdc3lem4 10467 fodomb 10540 ondomon 10577 gruina 10832 ioof 13464 hashbc 14471 trclun 15033 zsum 15734 fsum 15736 fprod 15957 eqgen 19164 symgfisg 19449 dvdsr 20322 asplss 21834 aspsubrg 21836 psrval 21875 clsf 22986 restco 23102 subbascn 23192 is2ndc 23384 ptbasin2 23516 ptbas 23517 indishmph 23736 ufldom 23900 cnextfres1 24006 ussid 24199 icopnfcld 24706 cnrehmeo 24902 cnrehmeoOLD 24903 csscld 25201 clsocv 25202 itg2gt0 25713 dvmptadd 25916 dvmptmul 25917 dvmptco 25928 logcn 26608 selberglem1 27508 noseq0 28236 hmopidmchi 32132 evl1deg2 33590 sigagensiga 34172 dya2iocbrsiga 34307 dya2icobrsiga 34308 logdivsqrle 34682 fnessref 36375 bj-snexg 37052 bj-unexg 37056 unirep 37738 indexdom 37758 dicfnN 41202 pwslnmlem0 43115 mendval 43203 orbitinit 44981 icof 45243 dvsubf 45943 dvdivf 45951 itgsinexplem1 45983 stirlinglem7 46109 fourierdlem73 46208 fouriersw 46260 ovolval4lem1 46678 lamberte 46920 i0oii 48894 io1ii 48895 2arwcatlem4 49475 2arwcat 49477 |
| Copyright terms: Public domain | W3C validator |