Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqeltrrdi | Structured version Visualization version GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eqeltrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
eqeltrrdi.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
eqeltrrdi | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2742 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | eqeltrrdi.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
4 | 2, 3 | eqeltrdi 2845 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1780 df-cleq 2728 df-clel 2814 |
This theorem is referenced by: axrep6g 5226 wemoiso2 7849 releldm2 7916 mapprc 8650 mapfoss 8671 ixpprc 8738 bren 8774 brenOLD 8775 brdomg 8777 brdomgOLD 8778 domssex 8963 mapen 8966 ssenen 8976 imafi 8996 fodomfib 9137 fi0 9223 dffi3 9234 brwdom 9370 brwdomn0 9372 unxpwdom2 9391 ixpiunwdom 9393 tcmin 9543 rankonid 9631 rankr1id 9664 cardf2 9745 cardid2 9755 carduni 9783 fseqen 9829 acndom 9853 acndom2 9856 alephnbtwn 9873 cardcf 10054 cfeq0 10058 cflim2 10065 coftr 10075 infpssr 10110 hsmexlem5 10232 axdc3lem4 10255 fodomb 10328 ondomon 10365 gruina 10620 ioof 13225 hashbc 14210 hashfacenOLD 14212 trclun 14770 zsum 15475 fsum 15477 fprod 15696 eqgen 18854 symgfisg 19121 dvdsr 19933 asplss 21123 aspsubrg 21125 psrval 21163 clsf 22244 restco 22360 subbascn 22450 is2ndc 22642 ptbasin2 22774 ptbas 22775 indishmph 22994 ufldom 23158 cnextfres1 23264 ussid 23457 icopnfcld 23976 cnrehmeo 24161 csscld 24458 clsocv 24459 itg2gt0 24970 dvmptadd 25169 dvmptmul 25170 dvmptco 25181 logcn 25847 selberglem1 26738 hmopidmchi 30558 sigagensiga 32154 dya2iocbrsiga 32287 dya2icobrsiga 32288 logdivsqrle 32675 fnessref 34591 unirep 35915 indexdom 35936 dicfnN 39239 pwslnmlem0 40954 mendval 41046 icof 42803 dvsubf 43504 dvdivf 43512 itgsinexplem1 43544 stirlinglem7 43670 fourierdlem73 43769 fouriersw 43821 ovolval4lem1 44237 i0oii 46271 io1ii 46272 |
Copyright terms: Public domain | W3C validator |