| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeltrrdi | Structured version Visualization version GIF version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqeltrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| eqeltrrdi.2 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltrrdi | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2735 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | eqeltrrdi.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 4 | 2, 3 | eqeltrdi 2836 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: axrep6g 5245 snexg 5390 wemoiso2 7953 releldm2 8022 mapprc 8803 mapfoss 8825 ixpprc 8892 bren 8928 brdomg 8930 domssex 9102 mapen 9105 ssenen 9115 imafiOLD 9265 fodomfib 9280 fodomfibOLD 9282 fi0 9371 dffi3 9382 brwdom 9520 brwdomn0 9522 unxpwdom2 9541 ixpiunwdom 9543 tcmin 9694 rankonid 9782 rankr1id 9815 cardf2 9896 cardid2 9906 carduni 9934 fseqen 9980 acndom 10004 acndom2 10007 alephnbtwn 10024 cardcf 10205 cfeq0 10209 cflim2 10216 coftr 10226 infpssr 10261 hsmexlem5 10383 axdc3lem4 10406 fodomb 10479 ondomon 10516 gruina 10771 ioof 13408 hashbc 14418 trclun 14980 zsum 15684 fsum 15686 fprod 15907 eqgen 19113 symgfisg 19398 dvdsr 20271 asplss 21783 aspsubrg 21785 psrval 21824 clsf 22935 restco 23051 subbascn 23141 is2ndc 23333 ptbasin2 23465 ptbas 23466 indishmph 23685 ufldom 23849 cnextfres1 23955 ussid 24148 icopnfcld 24655 cnrehmeo 24851 cnrehmeoOLD 24852 csscld 25149 clsocv 25150 itg2gt0 25661 dvmptadd 25864 dvmptmul 25865 dvmptco 25876 logcn 26556 selberglem1 27456 noseq0 28184 hmopidmchi 32080 evl1deg2 33546 sigagensiga 34131 dya2iocbrsiga 34266 dya2icobrsiga 34267 logdivsqrle 34641 fnessref 36345 bj-snexg 37022 bj-unexg 37026 unirep 37708 indexdom 37728 dicfnN 41177 pwslnmlem0 43080 mendval 43168 orbitinit 44946 icof 45213 dvsubf 45912 dvdivf 45920 itgsinexplem1 45952 stirlinglem7 46078 fourierdlem73 46177 fouriersw 46229 ovolval4lem1 46647 lamberte 46889 i0oii 48908 io1ii 48909 2arwcatlem4 49587 2arwcat 49589 |
| Copyright terms: Public domain | W3C validator |