![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqeltrrdi | Structured version Visualization version GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eqeltrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
eqeltrrdi.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
eqeltrrdi | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2741 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | eqeltrrdi.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
4 | 2, 3 | eqeltrdi 2847 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-clel 2814 |
This theorem is referenced by: axrep6g 5296 snexg 5441 wemoiso2 7998 releldm2 8067 mapprc 8869 mapfoss 8891 ixpprc 8958 bren 8994 brdomg 8996 brdomgOLD 8997 domssex 9177 mapen 9180 ssenen 9190 imafiOLD 9352 fodomfib 9367 fodomfibOLD 9369 fi0 9458 dffi3 9469 brwdom 9605 brwdomn0 9607 unxpwdom2 9626 ixpiunwdom 9628 tcmin 9779 rankonid 9867 rankr1id 9900 cardf2 9981 cardid2 9991 carduni 10019 fseqen 10065 acndom 10089 acndom2 10092 alephnbtwn 10109 cardcf 10290 cfeq0 10294 cflim2 10301 coftr 10311 infpssr 10346 hsmexlem5 10468 axdc3lem4 10491 fodomb 10564 ondomon 10601 gruina 10856 ioof 13484 hashbc 14489 trclun 15050 zsum 15751 fsum 15753 fprod 15974 eqgen 19212 symgfisg 19501 dvdsr 20379 asplss 21912 aspsubrg 21914 psrval 21953 clsf 23072 restco 23188 subbascn 23278 is2ndc 23470 ptbasin2 23602 ptbas 23603 indishmph 23822 ufldom 23986 cnextfres1 24092 ussid 24285 icopnfcld 24804 cnrehmeo 24998 cnrehmeoOLD 24999 csscld 25297 clsocv 25298 itg2gt0 25810 dvmptadd 26013 dvmptmul 26014 dvmptco 26025 logcn 26704 selberglem1 27604 noseq0 28311 hmopidmchi 32180 evl1deg2 33582 sigagensiga 34122 dya2iocbrsiga 34257 dya2icobrsiga 34258 logdivsqrle 34644 fnessref 36340 bj-snexg 37017 bj-unexg 37021 unirep 37701 indexdom 37721 dicfnN 41166 pwslnmlem0 43080 mendval 43168 icof 45162 dvsubf 45870 dvdivf 45878 itgsinexplem1 45910 stirlinglem7 46036 fourierdlem73 46135 fouriersw 46187 ovolval4lem1 46605 i0oii 48716 io1ii 48717 |
Copyright terms: Public domain | W3C validator |