![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqeltrrdi | Structured version Visualization version GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eqeltrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
eqeltrrdi.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
eqeltrrdi | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2730 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | eqeltrrdi.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
4 | 2, 3 | eqeltrdi 2833 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-cleq 2716 df-clel 2802 |
This theorem is referenced by: axrep6g 5284 snexg 5421 wemoiso2 7955 releldm2 8023 mapprc 8821 mapfoss 8843 ixpprc 8910 bren 8946 brenOLD 8947 brdomg 8949 brdomgOLD 8950 domssex 9135 mapen 9138 ssenen 9148 imafi 9172 fodomfib 9323 fi0 9412 dffi3 9423 brwdom 9559 brwdomn0 9561 unxpwdom2 9580 ixpiunwdom 9582 tcmin 9733 rankonid 9821 rankr1id 9854 cardf2 9935 cardid2 9945 carduni 9973 fseqen 10019 acndom 10043 acndom2 10046 alephnbtwn 10063 cardcf 10244 cfeq0 10248 cflim2 10255 coftr 10265 infpssr 10300 hsmexlem5 10422 axdc3lem4 10445 fodomb 10518 ondomon 10555 gruina 10810 ioof 13422 hashbc 14410 hashfacenOLD 14412 trclun 14959 zsum 15662 fsum 15664 fprod 15883 eqgen 19100 symgfisg 19380 dvdsr 20256 asplss 21738 aspsubrg 21740 psrval 21779 clsf 22876 restco 22992 subbascn 23082 is2ndc 23274 ptbasin2 23406 ptbas 23407 indishmph 23626 ufldom 23790 cnextfres1 23896 ussid 24089 icopnfcld 24608 cnrehmeo 24802 cnrehmeoOLD 24803 csscld 25101 clsocv 25102 itg2gt0 25614 dvmptadd 25816 dvmptmul 25817 dvmptco 25828 logcn 26500 selberglem1 27397 noseq0 28082 hmopidmchi 31876 sigagensiga 33631 dya2iocbrsiga 33766 dya2icobrsiga 33767 logdivsqrle 34153 fnessref 35733 bj-snexg 36406 bj-unexg 36410 unirep 37076 indexdom 37096 dicfnN 40548 pwslnmlem0 42347 mendval 42439 icof 44428 dvsubf 45140 dvdivf 45148 itgsinexplem1 45180 stirlinglem7 45306 fourierdlem73 45405 fouriersw 45457 ovolval4lem1 45875 i0oii 47764 io1ii 47765 |
Copyright terms: Public domain | W3C validator |