Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqeltrrdi | Structured version Visualization version GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eqeltrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
eqeltrrdi.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
eqeltrrdi | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2745 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | eqeltrrdi.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
4 | 2, 3 | eqeltrdi 2848 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-cleq 2731 df-clel 2817 |
This theorem is referenced by: wemoiso2 7803 releldm2 7870 mapprc 8593 mapfoss 8614 ixpprc 8681 bren 8717 brenOLD 8718 brdomg 8719 domssex 8890 mapen 8893 ssenen 8903 imafi 8923 fodomfib 9054 fi0 9140 dffi3 9151 brwdom 9287 brwdomn0 9289 unxpwdom2 9308 ixpiunwdom 9310 tcmin 9482 rankonid 9571 rankr1id 9604 cardf2 9685 cardid2 9695 carduni 9723 fseqen 9767 acndom 9791 acndom2 9794 alephnbtwn 9811 cardcf 9992 cfeq0 9996 cflim2 10003 coftr 10013 infpssr 10048 hsmexlem5 10170 axdc3lem4 10193 fodomb 10266 ondomon 10303 gruina 10558 ioof 13161 hashbc 14146 hashfacenOLD 14148 trclun 14706 zsum 15411 fsum 15413 fprod 15632 eqgen 18790 symgfisg 19057 dvdsr 19869 asplss 21059 aspsubrg 21061 psrval 21099 clsf 22180 restco 22296 subbascn 22386 is2ndc 22578 ptbasin2 22710 ptbas 22711 indishmph 22930 ufldom 23094 cnextfres1 23200 ussid 23393 icopnfcld 23912 cnrehmeo 24097 csscld 24394 clsocv 24395 itg2gt0 24906 dvmptadd 25105 dvmptmul 25106 dvmptco 25117 logcn 25783 selberglem1 26674 hmopidmchi 30492 sigagensiga 32088 dya2iocbrsiga 32221 dya2icobrsiga 32222 logdivsqrle 32609 fnessref 34525 unirep 35850 indexdom 35871 dicfnN 39176 pwslnmlem0 40896 mendval 40988 icof 42712 dvsubf 43409 dvdivf 43417 itgsinexplem1 43449 stirlinglem7 43575 fourierdlem73 43674 fouriersw 43726 ovolval4lem1 44141 i0oii 46165 io1ii 46166 |
Copyright terms: Public domain | W3C validator |