| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeltrrdi | Structured version Visualization version GIF version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqeltrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| eqeltrrdi.2 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltrrdi | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2736 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | eqeltrrdi.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 4 | 2, 3 | eqeltrdi 2837 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-clel 2804 |
| This theorem is referenced by: axrep6g 5248 snexg 5393 wemoiso2 7956 releldm2 8025 mapprc 8806 mapfoss 8828 ixpprc 8895 bren 8931 brdomg 8933 domssex 9108 mapen 9111 ssenen 9121 imafiOLD 9272 fodomfib 9287 fodomfibOLD 9289 fi0 9378 dffi3 9389 brwdom 9527 brwdomn0 9529 unxpwdom2 9548 ixpiunwdom 9550 tcmin 9701 rankonid 9789 rankr1id 9822 cardf2 9903 cardid2 9913 carduni 9941 fseqen 9987 acndom 10011 acndom2 10014 alephnbtwn 10031 cardcf 10212 cfeq0 10216 cflim2 10223 coftr 10233 infpssr 10268 hsmexlem5 10390 axdc3lem4 10413 fodomb 10486 ondomon 10523 gruina 10778 ioof 13415 hashbc 14425 trclun 14987 zsum 15691 fsum 15693 fprod 15914 eqgen 19120 symgfisg 19405 dvdsr 20278 asplss 21790 aspsubrg 21792 psrval 21831 clsf 22942 restco 23058 subbascn 23148 is2ndc 23340 ptbasin2 23472 ptbas 23473 indishmph 23692 ufldom 23856 cnextfres1 23962 ussid 24155 icopnfcld 24662 cnrehmeo 24858 cnrehmeoOLD 24859 csscld 25156 clsocv 25157 itg2gt0 25668 dvmptadd 25871 dvmptmul 25872 dvmptco 25883 logcn 26563 selberglem1 27463 noseq0 28191 hmopidmchi 32087 evl1deg2 33553 sigagensiga 34138 dya2iocbrsiga 34273 dya2icobrsiga 34274 logdivsqrle 34648 fnessref 36352 bj-snexg 37029 bj-unexg 37033 unirep 37715 indexdom 37735 dicfnN 41184 pwslnmlem0 43087 mendval 43175 orbitinit 44953 icof 45220 dvsubf 45919 dvdivf 45927 itgsinexplem1 45959 stirlinglem7 46085 fourierdlem73 46184 fouriersw 46236 ovolval4lem1 46654 lamberte 46896 i0oii 48912 io1ii 48913 2arwcatlem4 49591 2arwcat 49593 |
| Copyright terms: Public domain | W3C validator |