| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeltrrdi | Structured version Visualization version GIF version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqeltrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| eqeltrrdi.2 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltrrdi | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2735 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | eqeltrrdi.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 4 | 2, 3 | eqeltrdi 2836 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: axrep6g 5240 snexg 5385 wemoiso2 7932 releldm2 8001 mapprc 8780 mapfoss 8802 ixpprc 8869 bren 8905 brdomg 8907 domssex 9079 mapen 9082 ssenen 9092 imafiOLD 9241 fodomfib 9256 fodomfibOLD 9258 fi0 9347 dffi3 9358 brwdom 9496 brwdomn0 9498 unxpwdom2 9517 ixpiunwdom 9519 tcmin 9670 rankonid 9758 rankr1id 9791 cardf2 9872 cardid2 9882 carduni 9910 fseqen 9956 acndom 9980 acndom2 9983 alephnbtwn 10000 cardcf 10181 cfeq0 10185 cflim2 10192 coftr 10202 infpssr 10237 hsmexlem5 10359 axdc3lem4 10382 fodomb 10455 ondomon 10492 gruina 10747 ioof 13384 hashbc 14394 trclun 14956 zsum 15660 fsum 15662 fprod 15883 eqgen 19095 symgfisg 19382 dvdsr 20282 asplss 21816 aspsubrg 21818 psrval 21857 clsf 22968 restco 23084 subbascn 23174 is2ndc 23366 ptbasin2 23498 ptbas 23499 indishmph 23718 ufldom 23882 cnextfres1 23988 ussid 24181 icopnfcld 24688 cnrehmeo 24884 cnrehmeoOLD 24885 csscld 25182 clsocv 25183 itg2gt0 25694 dvmptadd 25897 dvmptmul 25898 dvmptco 25909 logcn 26589 selberglem1 27489 noseq0 28224 hmopidmchi 32130 evl1deg2 33539 sigagensiga 34124 dya2iocbrsiga 34259 dya2icobrsiga 34260 logdivsqrle 34634 fnessref 36338 bj-snexg 37015 bj-unexg 37019 unirep 37701 indexdom 37721 dicfnN 41170 pwslnmlem0 43073 mendval 43161 orbitinit 44939 icof 45206 dvsubf 45905 dvdivf 45913 itgsinexplem1 45945 stirlinglem7 46071 fourierdlem73 46170 fouriersw 46222 ovolval4lem1 46640 lamberte 46882 i0oii 48901 io1ii 48902 2arwcatlem4 49580 2arwcat 49582 |
| Copyright terms: Public domain | W3C validator |