Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snex | Structured version Visualization version GIF version |
Description: A singleton is a set. Theorem 7.12 of [Quine] p. 51, proved using Extensionality, Separation, Null Set, and Pairing. See also snexALT 5310. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 19-May-2013.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
snex | ⊢ {𝐴} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4580 | . . 3 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | preq12 4677 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝐴) → {𝑥, 𝑥} = {𝐴, 𝐴}) | |
3 | 2 | anidms 567 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥, 𝑥} = {𝐴, 𝐴}) |
4 | 3 | eleq1d 2825 | . . . 4 ⊢ (𝑥 = 𝐴 → ({𝑥, 𝑥} ∈ V ↔ {𝐴, 𝐴} ∈ V)) |
5 | zfpair2 5357 | . . . 4 ⊢ {𝑥, 𝑥} ∈ V | |
6 | 4, 5 | vtoclg 3504 | . . 3 ⊢ (𝐴 ∈ V → {𝐴, 𝐴} ∈ V) |
7 | 1, 6 | eqeltrid 2845 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) |
8 | snprc 4659 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
9 | 8 | biimpi 215 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
10 | 0ex 5235 | . . 3 ⊢ ∅ ∈ V | |
11 | 9, 10 | eqeltrdi 2849 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝐴} ∈ V) |
12 | 7, 11 | pm2.61i 182 | 1 ⊢ {𝐴} ∈ V |
Copyright terms: Public domain | W3C validator |