| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtocleg | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| vtocleg.1 | ⊢ (𝑥 = 𝐴 → 𝜑) |
| Ref | Expression |
|---|---|
| vtocleg | ⊢ (𝐴 ∈ 𝑉 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2817 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 2 | vtocleg.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝜑) | |
| 3 | 2 | exlimiv 1930 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜑) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-clel 2810 |
| This theorem is referenced by: vtoclg 3538 vtocleOLD 3540 spsbc 3783 snexg 5410 prex 5412 avril1 30449 bj-snexg 37057 rdgssun 37401 finxpreclem6 37419 ralssiun 37430 frege58c 43912 tz6.12i-afv2 47239 |
| Copyright terms: Public domain | W3C validator |