MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocleg Structured version   Visualization version   GIF version

Theorem vtocleg 3536
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Jun-1993.)
Hypothesis
Ref Expression
vtocleg.1 (𝑥 = 𝐴𝜑)
Assertion
Ref Expression
vtocleg (𝐴𝑉𝜑)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem vtocleg
StepHypRef Expression
1 elisset 2809 . 2 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
2 vtocleg.1 . . 3 (𝑥 = 𝐴𝜑)
32exlimiv 1925 . 2 (∃𝑥 𝑥 = 𝐴𝜑)
41, 3syl 17 1 (𝐴𝑉𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wex 1773  wcel 2098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2704  df-clel 2804
This theorem is referenced by:  vtoclg  3537  vtocle  3538  spsbc  3785  snexg  5423  prex  5425  avril1  30220  bj-snexg  36421  rdgssun  36765  finxpreclem6  36783  ralssiun  36794  frege58c  43230  tz6.12i-afv2  46505
  Copyright terms: Public domain W3C validator