![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtocleg | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
vtocleg.1 | ⊢ (𝑥 = 𝐴 → 𝜑) |
Ref | Expression |
---|---|
vtocleg | ⊢ (𝐴 ∈ 𝑉 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2816 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
2 | vtocleg.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝜑) | |
3 | 2 | exlimiv 1934 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜑) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∃wex 1782 ∈ wcel 2107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-clel 2811 |
This theorem is referenced by: vtoclg 3524 vtocle 3543 spsbc 3753 snexg 5388 prex 5390 avril1 29449 bj-snexg 35551 rdgssun 35895 finxpreclem6 35913 ralssiun 35924 frege58c 42281 tz6.12i-afv2 45561 |
Copyright terms: Public domain | W3C validator |