MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocleg Structured version   Visualization version   GIF version

Theorem vtocleg 3519
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Jun-1993.)
Hypothesis
Ref Expression
vtocleg.1 (𝑥 = 𝐴𝜑)
Assertion
Ref Expression
vtocleg (𝐴𝑉𝜑)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem vtocleg
StepHypRef Expression
1 elisset 2810 . 2 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
2 vtocleg.1 . . 3 (𝑥 = 𝐴𝜑)
32exlimiv 1930 . 2 (∃𝑥 𝑥 = 𝐴𝜑)
41, 3syl 17 1 (𝐴𝑉𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wex 1779  wcel 2109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-clel 2803
This theorem is referenced by:  vtoclg  3520  vtocleOLD  3522  spsbc  3766  snexg  5390  prex  5392  avril1  30392  bj-snexg  37022  rdgssun  37366  finxpreclem6  37384  ralssiun  37395  frege58c  43910  tz6.12i-afv2  47244
  Copyright terms: Public domain W3C validator