![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-elpwg | Structured version Visualization version GIF version |
Description: If the intersection of two classes is a set, then inclusion among these classes is equivalent to membership in the powerclass. Common generalization of elpwg 4604 and elpw2g 5343 (the latter of which could be proved from it). (Contributed by BJ, 31-Dec-2023.) |
Ref | Expression |
---|---|
bj-elpwg | ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4608 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | ssidd 4004 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐴) | |
3 | id 22 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐵) | |
4 | 2, 3 | ssind 4231 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐴 ∩ 𝐵)) |
5 | ssexg 5322 | . . . . 5 ⊢ ((𝐴 ⊆ (𝐴 ∩ 𝐵) ∧ (𝐴 ∩ 𝐵) ∈ 𝑉) → 𝐴 ∈ V) | |
6 | 4, 5 | sylan 578 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐵) ∈ 𝑉) → 𝐴 ∈ V) |
7 | elpwg 4604 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
8 | 7 | biimparc 478 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ V) → 𝐴 ∈ 𝒫 𝐵) |
9 | 6, 8 | syldan 589 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐵) ∈ 𝑉) → 𝐴 ∈ 𝒫 𝐵) |
10 | 9 | expcom 412 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝒫 𝐵)) |
11 | 1, 10 | impbid2 225 | 1 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2104 Vcvv 3472 ∩ cin 3946 ⊆ wss 3947 𝒫 cpw 4601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-in 3954 df-ss 3964 df-pw 4603 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |