| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-elpwg | Structured version Visualization version GIF version | ||
| Description: If the intersection of two classes is a set, then inclusion among these classes is equivalent to membership in the powerclass. Common generalization of elpwg 4569 and elpw2g 5291 (the latter of which could be proved from it). (Contributed by BJ, 31-Dec-2023.) |
| Ref | Expression |
|---|---|
| bj-elpwg | ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi 4573 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | ssidd 3973 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐴) | |
| 3 | id 22 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐵) | |
| 4 | 2, 3 | ssind 4207 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐴 ∩ 𝐵)) |
| 5 | ssexg 5281 | . . . . 5 ⊢ ((𝐴 ⊆ (𝐴 ∩ 𝐵) ∧ (𝐴 ∩ 𝐵) ∈ 𝑉) → 𝐴 ∈ V) | |
| 6 | 4, 5 | sylan 580 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐵) ∈ 𝑉) → 𝐴 ∈ V) |
| 7 | elpwg 4569 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 8 | 7 | biimparc 479 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ V) → 𝐴 ∈ 𝒫 𝐵) |
| 9 | 6, 8 | syldan 591 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐵) ∈ 𝑉) → 𝐴 ∈ 𝒫 𝐵) |
| 10 | 9 | expcom 413 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝒫 𝐵)) |
| 11 | 1, 10 | impbid2 226 | 1 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 𝒫 cpw 4566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 df-pw 4568 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |