Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elpwg Structured version   Visualization version   GIF version

Theorem bj-elpwg 37047
Description: If the intersection of two classes is a set, then inclusion among these classes is equivalent to membership in the powerclass. Common generalization of elpwg 4569 and elpw2g 5291 (the latter of which could be proved from it). (Contributed by BJ, 31-Dec-2023.)
Assertion
Ref Expression
bj-elpwg ((𝐴𝐵) ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))

Proof of Theorem bj-elpwg
StepHypRef Expression
1 elpwi 4573 . 2 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
2 ssidd 3973 . . . . . 6 (𝐴𝐵𝐴𝐴)
3 id 22 . . . . . 6 (𝐴𝐵𝐴𝐵)
42, 3ssind 4207 . . . . 5 (𝐴𝐵𝐴 ⊆ (𝐴𝐵))
5 ssexg 5281 . . . . 5 ((𝐴 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ 𝑉) → 𝐴 ∈ V)
64, 5sylan 580 . . . 4 ((𝐴𝐵 ∧ (𝐴𝐵) ∈ 𝑉) → 𝐴 ∈ V)
7 elpwg 4569 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
87biimparc 479 . . . 4 ((𝐴𝐵𝐴 ∈ V) → 𝐴 ∈ 𝒫 𝐵)
96, 8syldan 591 . . 3 ((𝐴𝐵 ∧ (𝐴𝐵) ∈ 𝑉) → 𝐴 ∈ 𝒫 𝐵)
109expcom 413 . 2 ((𝐴𝐵) ∈ 𝑉 → (𝐴𝐵𝐴 ∈ 𝒫 𝐵))
111, 10impbid2 226 1 ((𝐴𝐵) ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  Vcvv 3450  cin 3916  wss 3917  𝒫 cpw 4566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-in 3924  df-ss 3934  df-pw 4568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator