Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elpwg Structured version   Visualization version   GIF version

Theorem bj-elpwg 36389
Description: If the intersection of two classes is a set, then inclusion among these classes is equivalent to membership in the powerclass. Common generalization of elpwg 4597 and elpw2g 5334 (the latter of which could be proved from it). (Contributed by BJ, 31-Dec-2023.)
Assertion
Ref Expression
bj-elpwg ((𝐴𝐵) ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))

Proof of Theorem bj-elpwg
StepHypRef Expression
1 elpwi 4601 . 2 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
2 ssidd 3997 . . . . . 6 (𝐴𝐵𝐴𝐴)
3 id 22 . . . . . 6 (𝐴𝐵𝐴𝐵)
42, 3ssind 4224 . . . . 5 (𝐴𝐵𝐴 ⊆ (𝐴𝐵))
5 ssexg 5313 . . . . 5 ((𝐴 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ 𝑉) → 𝐴 ∈ V)
64, 5sylan 579 . . . 4 ((𝐴𝐵 ∧ (𝐴𝐵) ∈ 𝑉) → 𝐴 ∈ V)
7 elpwg 4597 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
87biimparc 479 . . . 4 ((𝐴𝐵𝐴 ∈ V) → 𝐴 ∈ 𝒫 𝐵)
96, 8syldan 590 . . 3 ((𝐴𝐵 ∧ (𝐴𝐵) ∈ 𝑉) → 𝐴 ∈ 𝒫 𝐵)
109expcom 413 . 2 ((𝐴𝐵) ∈ 𝑉 → (𝐴𝐵𝐴 ∈ 𝒫 𝐵))
111, 10impbid2 225 1 ((𝐴𝐵) ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2098  Vcvv 3466  cin 3939  wss 3940  𝒫 cpw 4594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-in 3947  df-ss 3957  df-pw 4596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator