Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elpwg Structured version   Visualization version   GIF version

Theorem bj-elpwg 34348
Description: If the intersection of two classes is a set, then inclusion among these classes is equivalent to membership in the powerclass. Common generalization of elpwg 4542 and elpw2g 5247 (the latter of which could be proved from it). (Contributed by BJ, 31-Dec-2023.)
Assertion
Ref Expression
bj-elpwg ((𝐴𝐵) ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))

Proof of Theorem bj-elpwg
StepHypRef Expression
1 elpwi 4548 . 2 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
2 ssidd 3990 . . . . . 6 (𝐴𝐵𝐴𝐴)
3 id 22 . . . . . 6 (𝐴𝐵𝐴𝐵)
42, 3ssind 4209 . . . . 5 (𝐴𝐵𝐴 ⊆ (𝐴𝐵))
5 ssexg 5227 . . . . 5 ((𝐴 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ 𝑉) → 𝐴 ∈ V)
64, 5sylan 582 . . . 4 ((𝐴𝐵 ∧ (𝐴𝐵) ∈ 𝑉) → 𝐴 ∈ V)
7 elpwg 4542 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
87biimparc 482 . . . 4 ((𝐴𝐵𝐴 ∈ V) → 𝐴 ∈ 𝒫 𝐵)
96, 8syldan 593 . . 3 ((𝐴𝐵 ∧ (𝐴𝐵) ∈ 𝑉) → 𝐴 ∈ 𝒫 𝐵)
109expcom 416 . 2 ((𝐴𝐵) ∈ 𝑉 → (𝐴𝐵𝐴 ∈ 𝒫 𝐵))
111, 10impbid2 228 1 ((𝐴𝐵) ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wcel 2114  Vcvv 3494  cin 3935  wss 3936  𝒫 cpw 4539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rab 3147  df-v 3496  df-in 3943  df-ss 3952  df-pw 4541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator