Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elpwg Structured version   Visualization version   GIF version

Theorem bj-elpwg 37092
Description: If the intersection of two classes is a set, then inclusion among these classes is equivalent to membership in the powerclass. Common generalization of elpwg 4553 and elpw2g 5271 (the latter of which could be proved from it). (Contributed by BJ, 31-Dec-2023.)
Assertion
Ref Expression
bj-elpwg ((𝐴𝐵) ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))

Proof of Theorem bj-elpwg
StepHypRef Expression
1 elpwi 4557 . 2 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
2 ssidd 3958 . . . . . 6 (𝐴𝐵𝐴𝐴)
3 id 22 . . . . . 6 (𝐴𝐵𝐴𝐵)
42, 3ssind 4191 . . . . 5 (𝐴𝐵𝐴 ⊆ (𝐴𝐵))
5 ssexg 5261 . . . . 5 ((𝐴 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ 𝑉) → 𝐴 ∈ V)
64, 5sylan 580 . . . 4 ((𝐴𝐵 ∧ (𝐴𝐵) ∈ 𝑉) → 𝐴 ∈ V)
7 elpwg 4553 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
87biimparc 479 . . . 4 ((𝐴𝐵𝐴 ∈ V) → 𝐴 ∈ 𝒫 𝐵)
96, 8syldan 591 . . 3 ((𝐴𝐵 ∧ (𝐴𝐵) ∈ 𝑉) → 𝐴 ∈ 𝒫 𝐵)
109expcom 413 . 2 ((𝐴𝐵) ∈ 𝑉 → (𝐴𝐵𝐴 ∈ 𝒫 𝐵))
111, 10impbid2 226 1 ((𝐴𝐵) ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2111  Vcvv 3436  cin 3901  wss 3902  𝒫 cpw 4550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-in 3909  df-ss 3919  df-pw 4552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator