Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-elpwg | Structured version Visualization version GIF version |
Description: If the intersection of two classes is a set, then inclusion among these classes is equivalent to membership in the powerclass. Common generalization of elpwg 4536 and elpw2g 5268 (the latter of which could be proved from it). (Contributed by BJ, 31-Dec-2023.) |
Ref | Expression |
---|---|
bj-elpwg | ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4542 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | ssidd 3944 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐴) | |
3 | id 22 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐵) | |
4 | 2, 3 | ssind 4166 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐴 ∩ 𝐵)) |
5 | ssexg 5247 | . . . . 5 ⊢ ((𝐴 ⊆ (𝐴 ∩ 𝐵) ∧ (𝐴 ∩ 𝐵) ∈ 𝑉) → 𝐴 ∈ V) | |
6 | 4, 5 | sylan 580 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐵) ∈ 𝑉) → 𝐴 ∈ V) |
7 | elpwg 4536 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
8 | 7 | biimparc 480 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ V) → 𝐴 ∈ 𝒫 𝐵) |
9 | 6, 8 | syldan 591 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐵) ∈ 𝑉) → 𝐴 ∈ 𝒫 𝐵) |
10 | 9 | expcom 414 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝒫 𝐵)) |
11 | 1, 10 | impbid2 225 | 1 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |