Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-elpwg | Structured version Visualization version GIF version |
Description: If the intersection of two classes is a set, then inclusion among these classes is equivalent to membership in the powerclass. Common generalization of elpwg 4533 and elpw2g 5263 (the latter of which could be proved from it). (Contributed by BJ, 31-Dec-2023.) |
Ref | Expression |
---|---|
bj-elpwg | ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4539 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | ssidd 3940 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐴) | |
3 | id 22 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐵) | |
4 | 2, 3 | ssind 4163 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐴 ∩ 𝐵)) |
5 | ssexg 5242 | . . . . 5 ⊢ ((𝐴 ⊆ (𝐴 ∩ 𝐵) ∧ (𝐴 ∩ 𝐵) ∈ 𝑉) → 𝐴 ∈ V) | |
6 | 4, 5 | sylan 579 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐵) ∈ 𝑉) → 𝐴 ∈ V) |
7 | elpwg 4533 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
8 | 7 | biimparc 479 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ V) → 𝐴 ∈ 𝒫 𝐵) |
9 | 6, 8 | syldan 590 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐵) ∈ 𝑉) → 𝐴 ∈ 𝒫 𝐵) |
10 | 9 | expcom 413 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝒫 𝐵)) |
11 | 1, 10 | impbid2 225 | 1 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |