Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1123 Structured version   Visualization version   GIF version

Theorem bnj1123 34962
Description: Technical lemma for bnj69 34986. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1123.4 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj1123.3 𝐾 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
bnj1123.1 (𝜂 ↔ ((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵))
bnj1123.2 (𝜂′[𝑗 / 𝑖]𝜂)
Assertion
Ref Expression
bnj1123 (𝜂′ ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵))
Distinct variable groups:   𝐵,𝑖   𝐷,𝑖   𝑓,𝑖   𝑖,𝑗   𝑖,𝑛   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑗,𝑛)   𝜓(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜂(𝑦,𝑓,𝑖,𝑗,𝑛)   𝐴(𝑦,𝑓,𝑖,𝑗,𝑛)   𝐵(𝑦,𝑓,𝑗,𝑛)   𝐷(𝑦,𝑓,𝑗,𝑛)   𝑅(𝑦,𝑓,𝑖,𝑗,𝑛)   𝐾(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜂′(𝑦,𝑓,𝑖,𝑗,𝑛)

Proof of Theorem bnj1123
StepHypRef Expression
1 bnj1123.2 . 2 (𝜂′[𝑗 / 𝑖]𝜂)
2 bnj1123.1 . . 3 (𝜂 ↔ ((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵))
32sbcbii 3865 . 2 ([𝑗 / 𝑖]𝜂[𝑗 / 𝑖]((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵))
4 bnj1123.3 . . . . . . . 8 𝐾 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
5 nfcv 2908 . . . . . . . . . 10 𝑖𝐷
6 nfv 1913 . . . . . . . . . . 11 𝑖 𝑓 Fn 𝑛
7 nfv 1913 . . . . . . . . . . 11 𝑖𝜑
8 bnj1123.4 . . . . . . . . . . . . 13 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
98bnj1095 34757 . . . . . . . . . . . 12 (𝜓 → ∀𝑖𝜓)
109nf5i 2146 . . . . . . . . . . 11 𝑖𝜓
116, 7, 10nf3an 1900 . . . . . . . . . 10 𝑖(𝑓 Fn 𝑛𝜑𝜓)
125, 11nfrexw 3319 . . . . . . . . 9 𝑖𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)
1312nfab 2914 . . . . . . . 8 𝑖{𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
144, 13nfcxfr 2906 . . . . . . 7 𝑖𝐾
1514nfcri 2900 . . . . . 6 𝑖 𝑓𝐾
16 nfv 1913 . . . . . 6 𝑖 𝑗 ∈ dom 𝑓
1715, 16nfan 1898 . . . . 5 𝑖(𝑓𝐾𝑗 ∈ dom 𝑓)
18 nfv 1913 . . . . 5 𝑖(𝑓𝑗) ⊆ 𝐵
1917, 18nfim 1895 . . . 4 𝑖((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵)
20 eleq1w 2827 . . . . . 6 (𝑖 = 𝑗 → (𝑖 ∈ dom 𝑓𝑗 ∈ dom 𝑓))
2120anbi2d 629 . . . . 5 (𝑖 = 𝑗 → ((𝑓𝐾𝑖 ∈ dom 𝑓) ↔ (𝑓𝐾𝑗 ∈ dom 𝑓)))
22 fveq2 6920 . . . . . 6 (𝑖 = 𝑗 → (𝑓𝑖) = (𝑓𝑗))
2322sseq1d 4040 . . . . 5 (𝑖 = 𝑗 → ((𝑓𝑖) ⊆ 𝐵 ↔ (𝑓𝑗) ⊆ 𝐵))
2421, 23imbi12d 344 . . . 4 (𝑖 = 𝑗 → (((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵) ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵)))
2519, 24sbciegf 3844 . . 3 (𝑗 ∈ V → ([𝑗 / 𝑖]((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵) ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵)))
2625elv 3493 . 2 ([𝑗 / 𝑖]((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵) ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵))
271, 3, 263bitri 297 1 (𝜂′ ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  Vcvv 3488  [wsbc 3804  wss 3976   ciun 5015  dom cdm 5700  suc csuc 6397   Fn wfn 6568  cfv 6573  ωcom 7903   predc-bnj14 34664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581
This theorem is referenced by:  bnj1030  34963
  Copyright terms: Public domain W3C validator