Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1123 Structured version   Visualization version   GIF version

Theorem bnj1123 32258
Description: Technical lemma for bnj69 32282. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1123.4 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj1123.3 𝐾 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
bnj1123.1 (𝜂 ↔ ((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵))
bnj1123.2 (𝜂′[𝑗 / 𝑖]𝜂)
Assertion
Ref Expression
bnj1123 (𝜂′ ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵))
Distinct variable groups:   𝐵,𝑖   𝐷,𝑖   𝑓,𝑖   𝑖,𝑗   𝑖,𝑛   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑗,𝑛)   𝜓(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜂(𝑦,𝑓,𝑖,𝑗,𝑛)   𝐴(𝑦,𝑓,𝑖,𝑗,𝑛)   𝐵(𝑦,𝑓,𝑗,𝑛)   𝐷(𝑦,𝑓,𝑗,𝑛)   𝑅(𝑦,𝑓,𝑖,𝑗,𝑛)   𝐾(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜂′(𝑦,𝑓,𝑖,𝑗,𝑛)

Proof of Theorem bnj1123
StepHypRef Expression
1 bnj1123.2 . 2 (𝜂′[𝑗 / 𝑖]𝜂)
2 bnj1123.1 . . 3 (𝜂 ↔ ((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵))
32sbcbii 3829 . 2 ([𝑗 / 𝑖]𝜂[𝑗 / 𝑖]((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵))
4 bnj1123.3 . . . . . . . 8 𝐾 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
5 nfcv 2977 . . . . . . . . . 10 𝑖𝐷
6 nfv 1915 . . . . . . . . . . 11 𝑖 𝑓 Fn 𝑛
7 nfv 1915 . . . . . . . . . . 11 𝑖𝜑
8 bnj1123.4 . . . . . . . . . . . . 13 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
98bnj1095 32053 . . . . . . . . . . . 12 (𝜓 → ∀𝑖𝜓)
109nf5i 2150 . . . . . . . . . . 11 𝑖𝜓
116, 7, 10nf3an 1902 . . . . . . . . . 10 𝑖(𝑓 Fn 𝑛𝜑𝜓)
125, 11nfrex 3309 . . . . . . . . 9 𝑖𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)
1312nfab 2984 . . . . . . . 8 𝑖{𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
144, 13nfcxfr 2975 . . . . . . 7 𝑖𝐾
1514nfcri 2971 . . . . . 6 𝑖 𝑓𝐾
16 nfv 1915 . . . . . 6 𝑖 𝑗 ∈ dom 𝑓
1715, 16nfan 1900 . . . . 5 𝑖(𝑓𝐾𝑗 ∈ dom 𝑓)
18 nfv 1915 . . . . 5 𝑖(𝑓𝑗) ⊆ 𝐵
1917, 18nfim 1897 . . . 4 𝑖((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵)
20 eleq1w 2895 . . . . . 6 (𝑖 = 𝑗 → (𝑖 ∈ dom 𝑓𝑗 ∈ dom 𝑓))
2120anbi2d 630 . . . . 5 (𝑖 = 𝑗 → ((𝑓𝐾𝑖 ∈ dom 𝑓) ↔ (𝑓𝐾𝑗 ∈ dom 𝑓)))
22 fveq2 6670 . . . . . 6 (𝑖 = 𝑗 → (𝑓𝑖) = (𝑓𝑗))
2322sseq1d 3998 . . . . 5 (𝑖 = 𝑗 → ((𝑓𝑖) ⊆ 𝐵 ↔ (𝑓𝑗) ⊆ 𝐵))
2421, 23imbi12d 347 . . . 4 (𝑖 = 𝑗 → (((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵) ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵)))
2519, 24sbciegf 3809 . . 3 (𝑗 ∈ V → ([𝑗 / 𝑖]((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵) ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵)))
2625elv 3499 . 2 ([𝑗 / 𝑖]((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵) ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵))
271, 3, 263bitri 299 1 (𝜂′ ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  {cab 2799  wral 3138  wrex 3139  Vcvv 3494  [wsbc 3772  wss 3936   ciun 4919  dom cdm 5555  suc csuc 6193   Fn wfn 6350  cfv 6355  ωcom 7580   predc-bnj14 31958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-iota 6314  df-fv 6363
This theorem is referenced by:  bnj1030  32259
  Copyright terms: Public domain W3C validator