| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj213 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj213 | ⊢ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bnj14 34679 | . 2 ⊢ pred(𝑋, 𝐴, 𝑅) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} | |
| 2 | 1 | ssrab3 4045 | 1 ⊢ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3914 class class class wbr 5107 predc-bnj14 34678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-ss 3931 df-bnj14 34679 |
| This theorem is referenced by: bnj229 34874 bnj517 34875 bnj1128 34980 bnj1145 34983 bnj1137 34985 bnj1408 35026 bnj1417 35031 bnj1523 35061 |
| Copyright terms: Public domain | W3C validator |