![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj213 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj213 | ⊢ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bnj14 34667 | . 2 ⊢ pred(𝑋, 𝐴, 𝑅) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} | |
2 | 1 | ssrab3 4105 | 1 ⊢ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3976 class class class wbr 5166 predc-bnj14 34666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-ss 3993 df-bnj14 34667 |
This theorem is referenced by: bnj229 34862 bnj517 34863 bnj1128 34968 bnj1145 34971 bnj1137 34973 bnj1408 35014 bnj1417 35019 bnj1523 35049 |
Copyright terms: Public domain | W3C validator |