Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj213 Structured version   Visualization version   GIF version

Theorem bnj213 32862
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj213 pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴

Proof of Theorem bnj213
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-bnj14 32668 . 2 pred(𝑋, 𝐴, 𝑅) = {𝑦𝐴𝑦𝑅𝑋}
21ssrab3 4015 1 pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wss 3887   class class class wbr 5074   predc-bnj14 32667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904  df-bnj14 32668
This theorem is referenced by:  bnj229  32864  bnj517  32865  bnj1128  32970  bnj1145  32973  bnj1137  32975  bnj1408  33016  bnj1417  33021  bnj1523  33051
  Copyright terms: Public domain W3C validator