Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj213 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj213 | ⊢ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bnj14 32668 | . 2 ⊢ pred(𝑋, 𝐴, 𝑅) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} | |
2 | 1 | ssrab3 4015 | 1 ⊢ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3887 class class class wbr 5074 predc-bnj14 32667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-bnj14 32668 |
This theorem is referenced by: bnj229 32864 bnj517 32865 bnj1128 32970 bnj1145 32973 bnj1137 32975 bnj1408 33016 bnj1417 33021 bnj1523 33051 |
Copyright terms: Public domain | W3C validator |