Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj213 Structured version   Visualization version   GIF version

Theorem bnj213 31494
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj213 pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴

Proof of Theorem bnj213
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-bnj14 31300 . 2 pred(𝑋, 𝐴, 𝑅) = {𝑦𝐴𝑦𝑅𝑋}
21ssrab3 3915 1 pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wss 3798   class class class wbr 4875   predc-bnj14 31299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-rab 3126  df-in 3805  df-ss 3812  df-bnj14 31300
This theorem is referenced by:  bnj229  31496  bnj517  31497  bnj1128  31600  bnj1145  31603  bnj1137  31605  bnj1408  31646  bnj1417  31651  bnj1523  31681
  Copyright terms: Public domain W3C validator