Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj213 Structured version   Visualization version   GIF version

Theorem bnj213 34860
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj213 pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴

Proof of Theorem bnj213
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-bnj14 34667 . 2 pred(𝑋, 𝐴, 𝑅) = {𝑦𝐴𝑦𝑅𝑋}
21ssrab3 4105 1 pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wss 3976   class class class wbr 5166   predc-bnj14 34666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-ss 3993  df-bnj14 34667
This theorem is referenced by:  bnj229  34862  bnj517  34863  bnj1128  34968  bnj1145  34971  bnj1137  34973  bnj1408  35014  bnj1417  35019  bnj1523  35049
  Copyright terms: Public domain W3C validator