| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj213 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj213 | ⊢ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bnj14 34701 | . 2 ⊢ pred(𝑋, 𝐴, 𝑅) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} | |
| 2 | 1 | ssrab3 4029 | 1 ⊢ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3897 class class class wbr 5089 predc-bnj14 34700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-ss 3914 df-bnj14 34701 |
| This theorem is referenced by: bnj229 34896 bnj517 34897 bnj1128 35002 bnj1145 35005 bnj1137 35007 bnj1408 35048 bnj1417 35053 bnj1523 35083 |
| Copyright terms: Public domain | W3C validator |