Proof of Theorem bnj207
Step | Hyp | Ref
| Expression |
1 | | bnj207.4 |
. 2
⊢ (𝜒′ ↔ [𝑀 / 𝑛]𝜒) |
2 | | bnj207.1 |
. . . 4
⊢ (𝜒 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
3 | 2 | sbcbii 3755 |
. . 3
⊢
([𝑀 / 𝑛]𝜒 ↔ [𝑀 / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
4 | | bnj207.5 |
. . . . 5
⊢ 𝑀 ∈ V |
5 | | nfv 1922 |
. . . . . 6
⊢
Ⅎ𝑛(𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) |
6 | 5 | sbc19.21g 3773 |
. . . . 5
⊢ (𝑀 ∈ V → ([𝑀 / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → [𝑀 / 𝑛]∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)))) |
7 | 4, 6 | ax-mp 5 |
. . . 4
⊢
([𝑀 / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → [𝑀 / 𝑛]∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
8 | 4 | bnj89 32412 |
. . . . . 6
⊢
([𝑀 / 𝑛]∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ ∃!𝑓[𝑀 / 𝑛](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
9 | 4 | bnj90 32413 |
. . . . . . . . 9
⊢
([𝑀 / 𝑛]𝑓 Fn 𝑛 ↔ 𝑓 Fn 𝑀) |
10 | 9 | bicomi 227 |
. . . . . . . 8
⊢ (𝑓 Fn 𝑀 ↔ [𝑀 / 𝑛]𝑓 Fn 𝑛) |
11 | | bnj207.2 |
. . . . . . . 8
⊢ (𝜑′ ↔ [𝑀 / 𝑛]𝜑) |
12 | | bnj207.3 |
. . . . . . . 8
⊢ (𝜓′ ↔ [𝑀 / 𝑛]𝜓) |
13 | 10, 11, 12, 4 | bnj206 32422 |
. . . . . . 7
⊢
([𝑀 / 𝑛](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (𝑓 Fn 𝑀 ∧ 𝜑′ ∧ 𝜓′)) |
14 | 13 | eubii 2584 |
. . . . . 6
⊢
(∃!𝑓[𝑀 / 𝑛](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ ∃!𝑓(𝑓 Fn 𝑀 ∧ 𝜑′ ∧ 𝜓′)) |
15 | 8, 14 | bitri 278 |
. . . . 5
⊢
([𝑀 / 𝑛]∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ ∃!𝑓(𝑓 Fn 𝑀 ∧ 𝜑′ ∧ 𝜓′)) |
16 | 15 | imbi2i 339 |
. . . 4
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → [𝑀 / 𝑛]∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑀 ∧ 𝜑′ ∧ 𝜓′))) |
17 | 7, 16 | bitri 278 |
. . 3
⊢
([𝑀 / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑀 ∧ 𝜑′ ∧ 𝜓′))) |
18 | 3, 17 | bitri 278 |
. 2
⊢
([𝑀 / 𝑛]𝜒 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑀 ∧ 𝜑′ ∧ 𝜓′))) |
19 | 1, 18 | bitri 278 |
1
⊢ (𝜒′ ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑀 ∧ 𝜑′ ∧ 𝜓′))) |