Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj222 Structured version   Visualization version   GIF version

Theorem bnj222 32863
Description: Technical lemma for bnj229 32864. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj222.1 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
Assertion
Ref Expression
bnj222 (𝜓 ↔ ∀𝑚 ∈ ω (suc 𝑚𝑁 → (𝐹‘suc 𝑚) = 𝑦 ∈ (𝐹𝑚) pred(𝑦, 𝐴, 𝑅)))
Distinct variable groups:   𝐴,𝑖,𝑚   𝑖,𝐹,𝑚,𝑦   𝑖,𝑁,𝑚   𝑅,𝑖,𝑚
Allowed substitution hints:   𝜓(𝑦,𝑖,𝑚)   𝐴(𝑦)   𝑅(𝑦)   𝑁(𝑦)

Proof of Theorem bnj222
StepHypRef Expression
1 bnj222.1 . 2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
2 suceq 6331 . . . . 5 (𝑖 = 𝑚 → suc 𝑖 = suc 𝑚)
32eleq1d 2823 . . . 4 (𝑖 = 𝑚 → (suc 𝑖𝑁 ↔ suc 𝑚𝑁))
42fveq2d 6778 . . . . 5 (𝑖 = 𝑚 → (𝐹‘suc 𝑖) = (𝐹‘suc 𝑚))
5 fveq2 6774 . . . . . 6 (𝑖 = 𝑚 → (𝐹𝑖) = (𝐹𝑚))
65bnj1113 32765 . . . . 5 (𝑖 = 𝑚 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝐹𝑚) pred(𝑦, 𝐴, 𝑅))
74, 6eqeq12d 2754 . . . 4 (𝑖 = 𝑚 → ((𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐹‘suc 𝑚) = 𝑦 ∈ (𝐹𝑚) pred(𝑦, 𝐴, 𝑅)))
83, 7imbi12d 345 . . 3 (𝑖 = 𝑚 → ((suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑚𝑁 → (𝐹‘suc 𝑚) = 𝑦 ∈ (𝐹𝑚) pred(𝑦, 𝐴, 𝑅))))
98cbvralvw 3383 . 2 (∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑚 ∈ ω (suc 𝑚𝑁 → (𝐹‘suc 𝑚) = 𝑦 ∈ (𝐹𝑚) pred(𝑦, 𝐴, 𝑅)))
101, 9bitri 274 1 (𝜓 ↔ ∀𝑚 ∈ ω (suc 𝑚𝑁 → (𝐹‘suc 𝑚) = 𝑦 ∈ (𝐹𝑚) pred(𝑦, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  wral 3064   ciun 4924  suc csuc 6268  cfv 6433  ωcom 7712   predc-bnj14 32667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-suc 6272  df-iota 6391  df-fv 6441
This theorem is referenced by:  bnj229  32864  bnj589  32889
  Copyright terms: Public domain W3C validator