Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj517 Structured version   Visualization version   GIF version

Theorem bnj517 32865
Description: Technical lemma for bnj518 32866. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj517.1 (𝜑 ↔ (𝐹‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj517.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
Assertion
Ref Expression
bnj517 ((𝑁 ∈ ω ∧ 𝜑𝜓) → ∀𝑛𝑁 (𝐹𝑛) ⊆ 𝐴)
Distinct variable groups:   𝑖,𝑛,𝑦,𝐴   𝑖,𝐹,𝑛   𝑖,𝑁,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑖,𝑛)   𝜓(𝑦,𝑖,𝑛)   𝑅(𝑦,𝑖,𝑛)   𝐹(𝑦)   𝑁(𝑦)   𝑋(𝑦,𝑖,𝑛)

Proof of Theorem bnj517
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6774 . . . . . 6 (𝑚 = ∅ → (𝐹𝑚) = (𝐹‘∅))
2 simpl2 1191 . . . . . . 7 (((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) → 𝜑)
3 bnj517.1 . . . . . . 7 (𝜑 ↔ (𝐹‘∅) = pred(𝑋, 𝐴, 𝑅))
42, 3sylib 217 . . . . . 6 (((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) → (𝐹‘∅) = pred(𝑋, 𝐴, 𝑅))
51, 4sylan9eqr 2800 . . . . 5 ((((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) ∧ 𝑚 = ∅) → (𝐹𝑚) = pred(𝑋, 𝐴, 𝑅))
6 bnj213 32862 . . . . 5 pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴
75, 6eqsstrdi 3975 . . . 4 ((((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) ∧ 𝑚 = ∅) → (𝐹𝑚) ⊆ 𝐴)
8 bnj517.2 . . . . . . 7 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
9 r19.29r 3185 . . . . . . . . . 10 ((∃𝑖 ∈ ω 𝑚 = suc 𝑖 ∧ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))) → ∃𝑖 ∈ ω (𝑚 = suc 𝑖 ∧ (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))))
10 eleq1 2826 . . . . . . . . . . . . . 14 (𝑚 = suc 𝑖 → (𝑚𝑁 ↔ suc 𝑖𝑁))
1110biimpd 228 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → (𝑚𝑁 → suc 𝑖𝑁))
12 fveqeq2 6783 . . . . . . . . . . . . . 14 (𝑚 = suc 𝑖 → ((𝐹𝑚) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
13 bnj213 32862 . . . . . . . . . . . . . . . . 17 pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴
1413rgenw 3076 . . . . . . . . . . . . . . . 16 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴
15 iunss 4975 . . . . . . . . . . . . . . . 16 ( 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴 ↔ ∀𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴)
1614, 15mpbir 230 . . . . . . . . . . . . . . 15 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴
17 sseq1 3946 . . . . . . . . . . . . . . 15 ((𝐹𝑚) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) → ((𝐹𝑚) ⊆ 𝐴 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴))
1816, 17mpbiri 257 . . . . . . . . . . . . . 14 ((𝐹𝑚) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) → (𝐹𝑚) ⊆ 𝐴)
1912, 18syl6bir 253 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → ((𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) → (𝐹𝑚) ⊆ 𝐴))
2011, 19imim12d 81 . . . . . . . . . . . 12 (𝑚 = suc 𝑖 → ((suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)) → (𝑚𝑁 → (𝐹𝑚) ⊆ 𝐴)))
2120imp 407 . . . . . . . . . . 11 ((𝑚 = suc 𝑖 ∧ (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))) → (𝑚𝑁 → (𝐹𝑚) ⊆ 𝐴))
2221rexlimivw 3211 . . . . . . . . . 10 (∃𝑖 ∈ ω (𝑚 = suc 𝑖 ∧ (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))) → (𝑚𝑁 → (𝐹𝑚) ⊆ 𝐴))
239, 22syl 17 . . . . . . . . 9 ((∃𝑖 ∈ ω 𝑚 = suc 𝑖 ∧ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))) → (𝑚𝑁 → (𝐹𝑚) ⊆ 𝐴))
2423ex 413 . . . . . . . 8 (∃𝑖 ∈ ω 𝑚 = suc 𝑖 → (∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)) → (𝑚𝑁 → (𝐹𝑚) ⊆ 𝐴)))
2524com3l 89 . . . . . . 7 (∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)) → (𝑚𝑁 → (∃𝑖 ∈ ω 𝑚 = suc 𝑖 → (𝐹𝑚) ⊆ 𝐴)))
268, 25sylbi 216 . . . . . 6 (𝜓 → (𝑚𝑁 → (∃𝑖 ∈ ω 𝑚 = suc 𝑖 → (𝐹𝑚) ⊆ 𝐴)))
27263ad2ant3 1134 . . . . 5 ((𝑁 ∈ ω ∧ 𝜑𝜓) → (𝑚𝑁 → (∃𝑖 ∈ ω 𝑚 = suc 𝑖 → (𝐹𝑚) ⊆ 𝐴)))
2827imp31 418 . . . 4 ((((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) ∧ ∃𝑖 ∈ ω 𝑚 = suc 𝑖) → (𝐹𝑚) ⊆ 𝐴)
29 simpr 485 . . . . . 6 (((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) → 𝑚𝑁)
30 simpl1 1190 . . . . . 6 (((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) → 𝑁 ∈ ω)
31 elnn 7723 . . . . . 6 ((𝑚𝑁𝑁 ∈ ω) → 𝑚 ∈ ω)
3229, 30, 31syl2anc 584 . . . . 5 (((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) → 𝑚 ∈ ω)
33 nn0suc 7742 . . . . 5 (𝑚 ∈ ω → (𝑚 = ∅ ∨ ∃𝑖 ∈ ω 𝑚 = suc 𝑖))
3432, 33syl 17 . . . 4 (((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) → (𝑚 = ∅ ∨ ∃𝑖 ∈ ω 𝑚 = suc 𝑖))
357, 28, 34mpjaodan 956 . . 3 (((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) → (𝐹𝑚) ⊆ 𝐴)
3635ralrimiva 3103 . 2 ((𝑁 ∈ ω ∧ 𝜑𝜓) → ∀𝑚𝑁 (𝐹𝑚) ⊆ 𝐴)
37 fveq2 6774 . . . 4 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
3837sseq1d 3952 . . 3 (𝑚 = 𝑛 → ((𝐹𝑚) ⊆ 𝐴 ↔ (𝐹𝑛) ⊆ 𝐴))
3938cbvralvw 3383 . 2 (∀𝑚𝑁 (𝐹𝑚) ⊆ 𝐴 ↔ ∀𝑛𝑁 (𝐹𝑛) ⊆ 𝐴)
4036, 39sylib 217 1 ((𝑁 ∈ ω ∧ 𝜑𝜓) → ∀𝑛𝑁 (𝐹𝑛) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3887  c0 4256   ciun 4924  suc csuc 6268  cfv 6433  ωcom 7712   predc-bnj14 32667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fv 6441  df-om 7713  df-bnj14 32668
This theorem is referenced by:  bnj518  32866
  Copyright terms: Public domain W3C validator