Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj517 Structured version   Visualization version   GIF version

Theorem bnj517 32265
 Description: Technical lemma for bnj518 32266. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj517.1 (𝜑 ↔ (𝐹‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj517.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
Assertion
Ref Expression
bnj517 ((𝑁 ∈ ω ∧ 𝜑𝜓) → ∀𝑛𝑁 (𝐹𝑛) ⊆ 𝐴)
Distinct variable groups:   𝑖,𝑛,𝑦,𝐴   𝑖,𝐹,𝑛   𝑖,𝑁,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑖,𝑛)   𝜓(𝑦,𝑖,𝑛)   𝑅(𝑦,𝑖,𝑛)   𝐹(𝑦)   𝑁(𝑦)   𝑋(𝑦,𝑖,𝑛)

Proof of Theorem bnj517
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6649 . . . . . 6 (𝑚 = ∅ → (𝐹𝑚) = (𝐹‘∅))
2 simpl2 1189 . . . . . . 7 (((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) → 𝜑)
3 bnj517.1 . . . . . . 7 (𝜑 ↔ (𝐹‘∅) = pred(𝑋, 𝐴, 𝑅))
42, 3sylib 221 . . . . . 6 (((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) → (𝐹‘∅) = pred(𝑋, 𝐴, 𝑅))
51, 4sylan9eqr 2858 . . . . 5 ((((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) ∧ 𝑚 = ∅) → (𝐹𝑚) = pred(𝑋, 𝐴, 𝑅))
6 bnj213 32262 . . . . 5 pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴
75, 6eqsstrdi 3972 . . . 4 ((((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) ∧ 𝑚 = ∅) → (𝐹𝑚) ⊆ 𝐴)
8 bnj517.2 . . . . . . 7 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
9 r19.29r 3220 . . . . . . . . . 10 ((∃𝑖 ∈ ω 𝑚 = suc 𝑖 ∧ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))) → ∃𝑖 ∈ ω (𝑚 = suc 𝑖 ∧ (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))))
10 eleq1 2880 . . . . . . . . . . . . . 14 (𝑚 = suc 𝑖 → (𝑚𝑁 ↔ suc 𝑖𝑁))
1110biimpd 232 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → (𝑚𝑁 → suc 𝑖𝑁))
12 fveqeq2 6658 . . . . . . . . . . . . . 14 (𝑚 = suc 𝑖 → ((𝐹𝑚) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
13 bnj213 32262 . . . . . . . . . . . . . . . . 17 pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴
1413rgenw 3121 . . . . . . . . . . . . . . . 16 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴
15 iunss 4935 . . . . . . . . . . . . . . . 16 ( 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴 ↔ ∀𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴)
1614, 15mpbir 234 . . . . . . . . . . . . . . 15 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴
17 sseq1 3943 . . . . . . . . . . . . . . 15 ((𝐹𝑚) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) → ((𝐹𝑚) ⊆ 𝐴 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴))
1816, 17mpbiri 261 . . . . . . . . . . . . . 14 ((𝐹𝑚) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) → (𝐹𝑚) ⊆ 𝐴)
1912, 18syl6bir 257 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → ((𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) → (𝐹𝑚) ⊆ 𝐴))
2011, 19imim12d 81 . . . . . . . . . . . 12 (𝑚 = suc 𝑖 → ((suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)) → (𝑚𝑁 → (𝐹𝑚) ⊆ 𝐴)))
2120imp 410 . . . . . . . . . . 11 ((𝑚 = suc 𝑖 ∧ (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))) → (𝑚𝑁 → (𝐹𝑚) ⊆ 𝐴))
2221rexlimivw 3244 . . . . . . . . . 10 (∃𝑖 ∈ ω (𝑚 = suc 𝑖 ∧ (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))) → (𝑚𝑁 → (𝐹𝑚) ⊆ 𝐴))
239, 22syl 17 . . . . . . . . 9 ((∃𝑖 ∈ ω 𝑚 = suc 𝑖 ∧ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))) → (𝑚𝑁 → (𝐹𝑚) ⊆ 𝐴))
2423ex 416 . . . . . . . 8 (∃𝑖 ∈ ω 𝑚 = suc 𝑖 → (∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)) → (𝑚𝑁 → (𝐹𝑚) ⊆ 𝐴)))
2524com3l 89 . . . . . . 7 (∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)) → (𝑚𝑁 → (∃𝑖 ∈ ω 𝑚 = suc 𝑖 → (𝐹𝑚) ⊆ 𝐴)))
268, 25sylbi 220 . . . . . 6 (𝜓 → (𝑚𝑁 → (∃𝑖 ∈ ω 𝑚 = suc 𝑖 → (𝐹𝑚) ⊆ 𝐴)))
27263ad2ant3 1132 . . . . 5 ((𝑁 ∈ ω ∧ 𝜑𝜓) → (𝑚𝑁 → (∃𝑖 ∈ ω 𝑚 = suc 𝑖 → (𝐹𝑚) ⊆ 𝐴)))
2827imp31 421 . . . 4 ((((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) ∧ ∃𝑖 ∈ ω 𝑚 = suc 𝑖) → (𝐹𝑚) ⊆ 𝐴)
29 simpr 488 . . . . . 6 (((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) → 𝑚𝑁)
30 simpl1 1188 . . . . . 6 (((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) → 𝑁 ∈ ω)
31 elnn 7574 . . . . . 6 ((𝑚𝑁𝑁 ∈ ω) → 𝑚 ∈ ω)
3229, 30, 31syl2anc 587 . . . . 5 (((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) → 𝑚 ∈ ω)
33 nn0suc 7590 . . . . 5 (𝑚 ∈ ω → (𝑚 = ∅ ∨ ∃𝑖 ∈ ω 𝑚 = suc 𝑖))
3432, 33syl 17 . . . 4 (((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) → (𝑚 = ∅ ∨ ∃𝑖 ∈ ω 𝑚 = suc 𝑖))
357, 28, 34mpjaodan 956 . . 3 (((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) → (𝐹𝑚) ⊆ 𝐴)
3635ralrimiva 3152 . 2 ((𝑁 ∈ ω ∧ 𝜑𝜓) → ∀𝑚𝑁 (𝐹𝑚) ⊆ 𝐴)
37 fveq2 6649 . . . 4 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
3837sseq1d 3949 . . 3 (𝑚 = 𝑛 → ((𝐹𝑚) ⊆ 𝐴 ↔ (𝐹𝑛) ⊆ 𝐴))
3938cbvralvw 3399 . 2 (∀𝑚𝑁 (𝐹𝑚) ⊆ 𝐴 ↔ ∀𝑛𝑁 (𝐹𝑛) ⊆ 𝐴)
4036, 39sylib 221 1 ((𝑁 ∈ ω ∧ 𝜑𝜓) → ∀𝑛𝑁 (𝐹𝑛) ⊆ 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112  ∀wral 3109  ∃wrex 3110   ⊆ wss 3884  ∅c0 4246  ∪ ciun 4884  suc csuc 6165  ‘cfv 6328  ωcom 7564   predc-bnj14 32066 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-tr 5140  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fv 6336  df-om 7565  df-bnj14 32067 This theorem is referenced by:  bnj518  32266
 Copyright terms: Public domain W3C validator