Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj517 Structured version   Visualization version   GIF version

Theorem bnj517 32765
Description: Technical lemma for bnj518 32766. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj517.1 (𝜑 ↔ (𝐹‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj517.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
Assertion
Ref Expression
bnj517 ((𝑁 ∈ ω ∧ 𝜑𝜓) → ∀𝑛𝑁 (𝐹𝑛) ⊆ 𝐴)
Distinct variable groups:   𝑖,𝑛,𝑦,𝐴   𝑖,𝐹,𝑛   𝑖,𝑁,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑖,𝑛)   𝜓(𝑦,𝑖,𝑛)   𝑅(𝑦,𝑖,𝑛)   𝐹(𝑦)   𝑁(𝑦)   𝑋(𝑦,𝑖,𝑛)

Proof of Theorem bnj517
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . . . 6 (𝑚 = ∅ → (𝐹𝑚) = (𝐹‘∅))
2 simpl2 1190 . . . . . . 7 (((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) → 𝜑)
3 bnj517.1 . . . . . . 7 (𝜑 ↔ (𝐹‘∅) = pred(𝑋, 𝐴, 𝑅))
42, 3sylib 217 . . . . . 6 (((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) → (𝐹‘∅) = pred(𝑋, 𝐴, 𝑅))
51, 4sylan9eqr 2801 . . . . 5 ((((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) ∧ 𝑚 = ∅) → (𝐹𝑚) = pred(𝑋, 𝐴, 𝑅))
6 bnj213 32762 . . . . 5 pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴
75, 6eqsstrdi 3971 . . . 4 ((((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) ∧ 𝑚 = ∅) → (𝐹𝑚) ⊆ 𝐴)
8 bnj517.2 . . . . . . 7 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
9 r19.29r 3184 . . . . . . . . . 10 ((∃𝑖 ∈ ω 𝑚 = suc 𝑖 ∧ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))) → ∃𝑖 ∈ ω (𝑚 = suc 𝑖 ∧ (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))))
10 eleq1 2826 . . . . . . . . . . . . . 14 (𝑚 = suc 𝑖 → (𝑚𝑁 ↔ suc 𝑖𝑁))
1110biimpd 228 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → (𝑚𝑁 → suc 𝑖𝑁))
12 fveqeq2 6765 . . . . . . . . . . . . . 14 (𝑚 = suc 𝑖 → ((𝐹𝑚) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
13 bnj213 32762 . . . . . . . . . . . . . . . . 17 pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴
1413rgenw 3075 . . . . . . . . . . . . . . . 16 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴
15 iunss 4971 . . . . . . . . . . . . . . . 16 ( 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴 ↔ ∀𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴)
1614, 15mpbir 230 . . . . . . . . . . . . . . 15 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴
17 sseq1 3942 . . . . . . . . . . . . . . 15 ((𝐹𝑚) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) → ((𝐹𝑚) ⊆ 𝐴 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴))
1816, 17mpbiri 257 . . . . . . . . . . . . . 14 ((𝐹𝑚) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) → (𝐹𝑚) ⊆ 𝐴)
1912, 18syl6bir 253 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → ((𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) → (𝐹𝑚) ⊆ 𝐴))
2011, 19imim12d 81 . . . . . . . . . . . 12 (𝑚 = suc 𝑖 → ((suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)) → (𝑚𝑁 → (𝐹𝑚) ⊆ 𝐴)))
2120imp 406 . . . . . . . . . . 11 ((𝑚 = suc 𝑖 ∧ (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))) → (𝑚𝑁 → (𝐹𝑚) ⊆ 𝐴))
2221rexlimivw 3210 . . . . . . . . . 10 (∃𝑖 ∈ ω (𝑚 = suc 𝑖 ∧ (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))) → (𝑚𝑁 → (𝐹𝑚) ⊆ 𝐴))
239, 22syl 17 . . . . . . . . 9 ((∃𝑖 ∈ ω 𝑚 = suc 𝑖 ∧ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))) → (𝑚𝑁 → (𝐹𝑚) ⊆ 𝐴))
2423ex 412 . . . . . . . 8 (∃𝑖 ∈ ω 𝑚 = suc 𝑖 → (∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)) → (𝑚𝑁 → (𝐹𝑚) ⊆ 𝐴)))
2524com3l 89 . . . . . . 7 (∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)) → (𝑚𝑁 → (∃𝑖 ∈ ω 𝑚 = suc 𝑖 → (𝐹𝑚) ⊆ 𝐴)))
268, 25sylbi 216 . . . . . 6 (𝜓 → (𝑚𝑁 → (∃𝑖 ∈ ω 𝑚 = suc 𝑖 → (𝐹𝑚) ⊆ 𝐴)))
27263ad2ant3 1133 . . . . 5 ((𝑁 ∈ ω ∧ 𝜑𝜓) → (𝑚𝑁 → (∃𝑖 ∈ ω 𝑚 = suc 𝑖 → (𝐹𝑚) ⊆ 𝐴)))
2827imp31 417 . . . 4 ((((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) ∧ ∃𝑖 ∈ ω 𝑚 = suc 𝑖) → (𝐹𝑚) ⊆ 𝐴)
29 simpr 484 . . . . . 6 (((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) → 𝑚𝑁)
30 simpl1 1189 . . . . . 6 (((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) → 𝑁 ∈ ω)
31 elnn 7698 . . . . . 6 ((𝑚𝑁𝑁 ∈ ω) → 𝑚 ∈ ω)
3229, 30, 31syl2anc 583 . . . . 5 (((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) → 𝑚 ∈ ω)
33 nn0suc 7716 . . . . 5 (𝑚 ∈ ω → (𝑚 = ∅ ∨ ∃𝑖 ∈ ω 𝑚 = suc 𝑖))
3432, 33syl 17 . . . 4 (((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) → (𝑚 = ∅ ∨ ∃𝑖 ∈ ω 𝑚 = suc 𝑖))
357, 28, 34mpjaodan 955 . . 3 (((𝑁 ∈ ω ∧ 𝜑𝜓) ∧ 𝑚𝑁) → (𝐹𝑚) ⊆ 𝐴)
3635ralrimiva 3107 . 2 ((𝑁 ∈ ω ∧ 𝜑𝜓) → ∀𝑚𝑁 (𝐹𝑚) ⊆ 𝐴)
37 fveq2 6756 . . . 4 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
3837sseq1d 3948 . . 3 (𝑚 = 𝑛 → ((𝐹𝑚) ⊆ 𝐴 ↔ (𝐹𝑛) ⊆ 𝐴))
3938cbvralvw 3372 . 2 (∀𝑚𝑁 (𝐹𝑚) ⊆ 𝐴 ↔ ∀𝑛𝑁 (𝐹𝑛) ⊆ 𝐴)
4036, 39sylib 217 1 ((𝑁 ∈ ω ∧ 𝜑𝜓) → ∀𝑛𝑁 (𝐹𝑛) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883  c0 4253   ciun 4921  suc csuc 6253  cfv 6418  ωcom 7687   predc-bnj14 32567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fv 6426  df-om 7688  df-bnj14 32568
This theorem is referenced by:  bnj518  32766
  Copyright terms: Public domain W3C validator