Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj529 Structured version   Visualization version   GIF version

Theorem bnj529 34724
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj529.1 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj529 (𝑀𝐷 → ∅ ∈ 𝑀)

Proof of Theorem bnj529
StepHypRef Expression
1 eldifsn 4737 . . . 4 (𝑀 ∈ (ω ∖ {∅}) ↔ (𝑀 ∈ ω ∧ 𝑀 ≠ ∅))
21biimpi 216 . . 3 (𝑀 ∈ (ω ∖ {∅}) → (𝑀 ∈ ω ∧ 𝑀 ≠ ∅))
3 bnj529.1 . . 3 𝐷 = (ω ∖ {∅})
42, 3eleq2s 2846 . 2 (𝑀𝐷 → (𝑀 ∈ ω ∧ 𝑀 ≠ ∅))
5 nnord 7807 . . 3 (𝑀 ∈ ω → Ord 𝑀)
65anim1i 615 . 2 ((𝑀 ∈ ω ∧ 𝑀 ≠ ∅) → (Ord 𝑀𝑀 ≠ ∅))
7 ord0eln0 6363 . . 3 (Ord 𝑀 → (∅ ∈ 𝑀𝑀 ≠ ∅))
87biimpar 477 . 2 ((Ord 𝑀𝑀 ≠ ∅) → ∅ ∈ 𝑀)
94, 6, 83syl 18 1 (𝑀𝐷 → ∅ ∈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3900  c0 4284  {csn 4577  Ord word 6306  ωcom 7799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-ord 6310  df-on 6311  df-om 7800
This theorem is referenced by:  bnj545  34878  bnj900  34912  bnj929  34919
  Copyright terms: Public domain W3C validator