| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj529 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj529.1 | ⊢ 𝐷 = (ω ∖ {∅}) |
| Ref | Expression |
|---|---|
| bnj529 | ⊢ (𝑀 ∈ 𝐷 → ∅ ∈ 𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn 4767 | . . . 4 ⊢ (𝑀 ∈ (ω ∖ {∅}) ↔ (𝑀 ∈ ω ∧ 𝑀 ≠ ∅)) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (𝑀 ∈ (ω ∖ {∅}) → (𝑀 ∈ ω ∧ 𝑀 ≠ ∅)) |
| 3 | bnj529.1 | . . 3 ⊢ 𝐷 = (ω ∖ {∅}) | |
| 4 | 2, 3 | eleq2s 2853 | . 2 ⊢ (𝑀 ∈ 𝐷 → (𝑀 ∈ ω ∧ 𝑀 ≠ ∅)) |
| 5 | nnord 7874 | . . 3 ⊢ (𝑀 ∈ ω → Ord 𝑀) | |
| 6 | 5 | anim1i 615 | . 2 ⊢ ((𝑀 ∈ ω ∧ 𝑀 ≠ ∅) → (Ord 𝑀 ∧ 𝑀 ≠ ∅)) |
| 7 | ord0eln0 6413 | . . 3 ⊢ (Ord 𝑀 → (∅ ∈ 𝑀 ↔ 𝑀 ≠ ∅)) | |
| 8 | 7 | biimpar 477 | . 2 ⊢ ((Ord 𝑀 ∧ 𝑀 ≠ ∅) → ∅ ∈ 𝑀) |
| 9 | 4, 6, 8 | 3syl 18 | 1 ⊢ (𝑀 ∈ 𝐷 → ∅ ∈ 𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∖ cdif 3928 ∅c0 4313 {csn 4606 Ord word 6356 ωcom 7866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-om 7867 |
| This theorem is referenced by: bnj545 34931 bnj900 34965 bnj929 34972 |
| Copyright terms: Public domain | W3C validator |