![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj529 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj529.1 | ⊢ 𝐷 = (ω ∖ {∅}) |
Ref | Expression |
---|---|
bnj529 | ⊢ (𝑀 ∈ 𝐷 → ∅ ∈ 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4790 | . . . 4 ⊢ (𝑀 ∈ (ω ∖ {∅}) ↔ (𝑀 ∈ ω ∧ 𝑀 ≠ ∅)) | |
2 | 1 | biimpi 215 | . . 3 ⊢ (𝑀 ∈ (ω ∖ {∅}) → (𝑀 ∈ ω ∧ 𝑀 ≠ ∅)) |
3 | bnj529.1 | . . 3 ⊢ 𝐷 = (ω ∖ {∅}) | |
4 | 2, 3 | eleq2s 2850 | . 2 ⊢ (𝑀 ∈ 𝐷 → (𝑀 ∈ ω ∧ 𝑀 ≠ ∅)) |
5 | nnord 7867 | . . 3 ⊢ (𝑀 ∈ ω → Ord 𝑀) | |
6 | 5 | anim1i 614 | . 2 ⊢ ((𝑀 ∈ ω ∧ 𝑀 ≠ ∅) → (Ord 𝑀 ∧ 𝑀 ≠ ∅)) |
7 | ord0eln0 6419 | . . 3 ⊢ (Ord 𝑀 → (∅ ∈ 𝑀 ↔ 𝑀 ≠ ∅)) | |
8 | 7 | biimpar 477 | . 2 ⊢ ((Ord 𝑀 ∧ 𝑀 ≠ ∅) → ∅ ∈ 𝑀) |
9 | 4, 6, 8 | 3syl 18 | 1 ⊢ (𝑀 ∈ 𝐷 → ∅ ∈ 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ∖ cdif 3945 ∅c0 4322 {csn 4628 Ord word 6363 ωcom 7859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 df-on 6368 df-om 7860 |
This theorem is referenced by: bnj545 34371 bnj900 34405 bnj929 34412 |
Copyright terms: Public domain | W3C validator |