Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj529 Structured version   Visualization version   GIF version

Theorem bnj529 32721
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj529.1 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj529 (𝑀𝐷 → ∅ ∈ 𝑀)

Proof of Theorem bnj529
StepHypRef Expression
1 eldifsn 4720 . . . 4 (𝑀 ∈ (ω ∖ {∅}) ↔ (𝑀 ∈ ω ∧ 𝑀 ≠ ∅))
21biimpi 215 . . 3 (𝑀 ∈ (ω ∖ {∅}) → (𝑀 ∈ ω ∧ 𝑀 ≠ ∅))
3 bnj529.1 . . 3 𝐷 = (ω ∖ {∅})
42, 3eleq2s 2857 . 2 (𝑀𝐷 → (𝑀 ∈ ω ∧ 𝑀 ≠ ∅))
5 nnord 7720 . . 3 (𝑀 ∈ ω → Ord 𝑀)
65anim1i 615 . 2 ((𝑀 ∈ ω ∧ 𝑀 ≠ ∅) → (Ord 𝑀𝑀 ≠ ∅))
7 ord0eln0 6320 . . 3 (Ord 𝑀 → (∅ ∈ 𝑀𝑀 ≠ ∅))
87biimpar 478 . 2 ((Ord 𝑀𝑀 ≠ ∅) → ∅ ∈ 𝑀)
94, 6, 83syl 18 1 (𝑀𝐷 → ∅ ∈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  cdif 3884  c0 4256  {csn 4561  Ord word 6265  ωcom 7712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-om 7713
This theorem is referenced by:  bnj545  32875  bnj900  32909  bnj929  32916
  Copyright terms: Public domain W3C validator