Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj529 Structured version   Visualization version   GIF version

Theorem bnj529 34717
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj529.1 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj529 (𝑀𝐷 → ∅ ∈ 𝑀)

Proof of Theorem bnj529
StepHypRef Expression
1 eldifsn 4811 . . . 4 (𝑀 ∈ (ω ∖ {∅}) ↔ (𝑀 ∈ ω ∧ 𝑀 ≠ ∅))
21biimpi 216 . . 3 (𝑀 ∈ (ω ∖ {∅}) → (𝑀 ∈ ω ∧ 𝑀 ≠ ∅))
3 bnj529.1 . . 3 𝐷 = (ω ∖ {∅})
42, 3eleq2s 2862 . 2 (𝑀𝐷 → (𝑀 ∈ ω ∧ 𝑀 ≠ ∅))
5 nnord 7911 . . 3 (𝑀 ∈ ω → Ord 𝑀)
65anim1i 614 . 2 ((𝑀 ∈ ω ∧ 𝑀 ≠ ∅) → (Ord 𝑀𝑀 ≠ ∅))
7 ord0eln0 6450 . . 3 (Ord 𝑀 → (∅ ∈ 𝑀𝑀 ≠ ∅))
87biimpar 477 . 2 ((Ord 𝑀𝑀 ≠ ∅) → ∅ ∈ 𝑀)
94, 6, 83syl 18 1 (𝑀𝐷 → ∅ ∈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  cdif 3973  c0 4352  {csn 4648  Ord word 6394  ωcom 7903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-om 7904
This theorem is referenced by:  bnj545  34871  bnj900  34905  bnj929  34912
  Copyright terms: Public domain W3C validator