|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sbcralg | Structured version Visualization version GIF version | ||
| Description: Interchange class substitution and restricted quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| sbcralg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfcv 2905 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 2 | sbcralt 3872 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑦𝐴) → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 Ⅎwnfc 2890 ∀wral 3061 [wsbc 3788 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-v 3482 df-sbc 3789 | 
| This theorem is referenced by: r19.12sn 4720 csbfrecsg 8309 bnj538 34754 cdlemkid3N 40935 cdlemkid4 40936 rspsbc2 44554 rspsbc2VD 44875 | 
| Copyright terms: Public domain | W3C validator |