MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  breqdi Structured version   Visualization version   GIF version

Theorem breqdi 5093
Description: Equality deduction for a binary relation. (Contributed by Thierry Arnoux, 5-Oct-2020.)
Hypotheses
Ref Expression
breq1d.1 (𝜑𝐴 = 𝐵)
breqdi.1 (𝜑𝐶𝐴𝐷)
Assertion
Ref Expression
breqdi (𝜑𝐶𝐵𝐷)

Proof of Theorem breqdi
StepHypRef Expression
1 breqdi.1 . 2 (𝜑𝐶𝐴𝐷)
2 breq1d.1 . . 3 (𝜑𝐴 = 𝐵)
32breqd 5089 . 2 (𝜑 → (𝐶𝐴𝐷𝐶𝐵𝐷))
41, 3mpbid 231 1 (𝜑𝐶𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541   class class class wbr 5078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786  df-cleq 2731  df-clel 2817  df-br 5079
This theorem is referenced by:  rtrclreclem3  14752  episect  17478  dvef  25125  acopyeu  27176  isleagd  27190  0prjspn  40445  brfvimex  41589  brovmptimex  41590  ntrclsnvobr  41615  clsneibex  41665  neicvgbex  41675
  Copyright terms: Public domain W3C validator