MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  breqdi Structured version   Visualization version   GIF version

Theorem breqdi 5164
Description: Equality deduction for a binary relation. (Contributed by Thierry Arnoux, 5-Oct-2020.)
Hypotheses
Ref Expression
breq1d.1 (𝜑𝐴 = 𝐵)
breqdi.1 (𝜑𝐶𝐴𝐷)
Assertion
Ref Expression
breqdi (𝜑𝐶𝐵𝐷)

Proof of Theorem breqdi
StepHypRef Expression
1 breqdi.1 . 2 (𝜑𝐶𝐴𝐷)
2 breq1d.1 . . 3 (𝜑𝐴 = 𝐵)
32breqd 5160 . 2 (𝜑 → (𝐶𝐴𝐷𝐶𝐵𝐷))
41, 3mpbid 231 1 (𝜑𝐶𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542   class class class wbr 5149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-cleq 2725  df-clel 2811  df-br 5150
This theorem is referenced by:  rtrclreclem3  15007  episect  17732  dvef  25497  acopyeu  28085  isleagd  28099  0prjspn  41370  brfvimex  42777  brovmptimex  42778  ntrclsnvobr  42803  clsneibex  42853  neicvgbex  42863
  Copyright terms: Public domain W3C validator