Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > breqdi | Structured version Visualization version GIF version |
Description: Equality deduction for a binary relation. (Contributed by Thierry Arnoux, 5-Oct-2020.) |
Ref | Expression |
---|---|
breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
breqdi.1 | ⊢ (𝜑 → 𝐶𝐴𝐷) |
Ref | Expression |
---|---|
breqdi | ⊢ (𝜑 → 𝐶𝐵𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqdi.1 | . 2 ⊢ (𝜑 → 𝐶𝐴𝐷) | |
2 | breq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | breqd 5089 | . 2 ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
4 | 1, 3 | mpbid 231 | 1 ⊢ (𝜑 → 𝐶𝐵𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 class class class wbr 5078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-cleq 2731 df-clel 2817 df-br 5079 |
This theorem is referenced by: rtrclreclem3 14752 episect 17478 dvef 25125 acopyeu 27176 isleagd 27190 0prjspn 40445 brfvimex 41589 brovmptimex 41590 ntrclsnvobr 41615 clsneibex 41665 neicvgbex 41675 |
Copyright terms: Public domain | W3C validator |