Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > breqdi | Structured version Visualization version GIF version |
Description: Equality deduction for a binary relation. (Contributed by Thierry Arnoux, 5-Oct-2020.) |
Ref | Expression |
---|---|
breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
breqdi.1 | ⊢ (𝜑 → 𝐶𝐴𝐷) |
Ref | Expression |
---|---|
breqdi | ⊢ (𝜑 → 𝐶𝐵𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqdi.1 | . 2 ⊢ (𝜑 → 𝐶𝐴𝐷) | |
2 | breq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | breqd 5085 | . 2 ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
4 | 1, 3 | mpbid 231 | 1 ⊢ (𝜑 → 𝐶𝐵𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 class class class wbr 5074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-clel 2816 df-br 5075 |
This theorem is referenced by: rtrclreclem3 14771 episect 17497 dvef 25144 acopyeu 27195 isleagd 27209 0prjspn 40465 brfvimex 41636 brovmptimex 41637 ntrclsnvobr 41662 clsneibex 41712 neicvgbex 41722 |
Copyright terms: Public domain | W3C validator |