MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  breqdi Structured version   Visualization version   GIF version

Theorem breqdi 5104
Description: Equality deduction for a binary relation. (Contributed by Thierry Arnoux, 5-Oct-2020.)
Hypotheses
Ref Expression
breq1d.1 (𝜑𝐴 = 𝐵)
breqdi.1 (𝜑𝐶𝐴𝐷)
Assertion
Ref Expression
breqdi (𝜑𝐶𝐵𝐷)

Proof of Theorem breqdi
StepHypRef Expression
1 breqdi.1 . 2 (𝜑𝐶𝐴𝐷)
2 breq1d.1 . . 3 (𝜑𝐴 = 𝐵)
32breqd 5100 . 2 (𝜑 → (𝐶𝐴𝐷𝐶𝐵𝐷))
41, 3mpbid 232 1 (𝜑𝐶𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541   class class class wbr 5089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723  df-clel 2806  df-br 5090
This theorem is referenced by:  rtrclreclem3  14967  episect  17692  dvef  25911  acopyeu  28812  isleagd  28826  weiunso  36510  0prjspn  42720  brfvimex  44118  brovmptimex  44119  ntrclsnvobr  44144  clsneibex  44194  neicvgbex  44204  up1st2nd  49285  up1st2ndr  49286
  Copyright terms: Public domain W3C validator