Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neicvgbex Structured version   Visualization version   GIF version

Theorem neicvgbex 44085
Description: If (pseudo-)neighborhood and (pseudo-)convergent functions are related by the composite operator, 𝐻, then the base set exists. (Contributed by RP, 4-Jun-2021.)
Hypotheses
Ref Expression
neicvgbex.d 𝐷 = (𝑃𝐵)
neicvgbex.h 𝐻 = (𝐹 ∘ (𝐷𝐺))
neicvgbex.r (𝜑𝑁𝐻𝑀)
Assertion
Ref Expression
neicvgbex (𝜑𝐵 ∈ V)

Proof of Theorem neicvgbex
StepHypRef Expression
1 neicvgbex.h . . . . 5 𝐻 = (𝐹 ∘ (𝐷𝐺))
2 neicvgbex.d . . . . . . 7 𝐷 = (𝑃𝐵)
32coeq1i 5802 . . . . . 6 (𝐷𝐺) = ((𝑃𝐵) ∘ 𝐺)
43coeq2i 5803 . . . . 5 (𝐹 ∘ (𝐷𝐺)) = (𝐹 ∘ ((𝑃𝐵) ∘ 𝐺))
51, 4eqtri 2752 . . . 4 𝐻 = (𝐹 ∘ ((𝑃𝐵) ∘ 𝐺))
65a1i 11 . . 3 (𝜑𝐻 = (𝐹 ∘ ((𝑃𝐵) ∘ 𝐺)))
7 neicvgbex.r . . 3 (𝜑𝑁𝐻𝑀)
86, 7breqdi 5107 . 2 (𝜑𝑁(𝐹 ∘ ((𝑃𝐵) ∘ 𝐺))𝑀)
9 brne0 5142 . 2 (𝑁(𝐹 ∘ ((𝑃𝐵) ∘ 𝐺))𝑀 → (𝐹 ∘ ((𝑃𝐵) ∘ 𝐺)) ≠ ∅)
10 fvprc 6814 . . . . . . . . . . . . 13 𝐵 ∈ V → (𝑃𝐵) = ∅)
1110dmeqd 5848 . . . . . . . . . . . 12 𝐵 ∈ V → dom (𝑃𝐵) = dom ∅)
12 dm0 5863 . . . . . . . . . . . 12 dom ∅ = ∅
1311, 12eqtrdi 2780 . . . . . . . . . . 11 𝐵 ∈ V → dom (𝑃𝐵) = ∅)
1413ineq1d 4170 . . . . . . . . . 10 𝐵 ∈ V → (dom (𝑃𝐵) ∩ ran 𝐺) = (∅ ∩ ran 𝐺))
15 0in 4348 . . . . . . . . . 10 (∅ ∩ ran 𝐺) = ∅
1614, 15eqtrdi 2780 . . . . . . . . 9 𝐵 ∈ V → (dom (𝑃𝐵) ∩ ran 𝐺) = ∅)
1716coemptyd 14886 . . . . . . . 8 𝐵 ∈ V → ((𝑃𝐵) ∘ 𝐺) = ∅)
1817rneqd 5880 . . . . . . 7 𝐵 ∈ V → ran ((𝑃𝐵) ∘ 𝐺) = ran ∅)
19 rn0 5868 . . . . . . 7 ran ∅ = ∅
2018, 19eqtrdi 2780 . . . . . 6 𝐵 ∈ V → ran ((𝑃𝐵) ∘ 𝐺) = ∅)
2120ineq2d 4171 . . . . 5 𝐵 ∈ V → (dom 𝐹 ∩ ran ((𝑃𝐵) ∘ 𝐺)) = (dom 𝐹 ∩ ∅))
22 in0 4346 . . . . 5 (dom 𝐹 ∩ ∅) = ∅
2321, 22eqtrdi 2780 . . . 4 𝐵 ∈ V → (dom 𝐹 ∩ ran ((𝑃𝐵) ∘ 𝐺)) = ∅)
2423coemptyd 14886 . . 3 𝐵 ∈ V → (𝐹 ∘ ((𝑃𝐵) ∘ 𝐺)) = ∅)
2524necon1ai 2952 . 2 ((𝐹 ∘ ((𝑃𝐵) ∘ 𝐺)) ≠ ∅ → 𝐵 ∈ V)
268, 9, 253syl 18 1 (𝜑𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wne 2925  Vcvv 3436  cin 3902  c0 4284   class class class wbr 5092  dom cdm 5619  ran crn 5620  ccom 5623  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6438  df-fv 6490
This theorem is referenced by:  neicvgrcomplex  44086  neicvgf1o  44087  neicvgnvo  44088  neicvgmex  44090  neicvgel1  44092
  Copyright terms: Public domain W3C validator