Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neicvgbex Structured version   Visualization version   GIF version

Theorem neicvgbex 44083
Description: If (pseudo-)neighborhood and (pseudo-)convergent functions are related by the composite operator, 𝐻, then the base set exists. (Contributed by RP, 4-Jun-2021.)
Hypotheses
Ref Expression
neicvgbex.d 𝐷 = (𝑃𝐵)
neicvgbex.h 𝐻 = (𝐹 ∘ (𝐷𝐺))
neicvgbex.r (𝜑𝑁𝐻𝑀)
Assertion
Ref Expression
neicvgbex (𝜑𝐵 ∈ V)

Proof of Theorem neicvgbex
StepHypRef Expression
1 neicvgbex.h . . . . 5 𝐻 = (𝐹 ∘ (𝐷𝐺))
2 neicvgbex.d . . . . . . 7 𝐷 = (𝑃𝐵)
32coeq1i 5839 . . . . . 6 (𝐷𝐺) = ((𝑃𝐵) ∘ 𝐺)
43coeq2i 5840 . . . . 5 (𝐹 ∘ (𝐷𝐺)) = (𝐹 ∘ ((𝑃𝐵) ∘ 𝐺))
51, 4eqtri 2758 . . . 4 𝐻 = (𝐹 ∘ ((𝑃𝐵) ∘ 𝐺))
65a1i 11 . . 3 (𝜑𝐻 = (𝐹 ∘ ((𝑃𝐵) ∘ 𝐺)))
7 neicvgbex.r . . 3 (𝜑𝑁𝐻𝑀)
86, 7breqdi 5134 . 2 (𝜑𝑁(𝐹 ∘ ((𝑃𝐵) ∘ 𝐺))𝑀)
9 brne0 5169 . 2 (𝑁(𝐹 ∘ ((𝑃𝐵) ∘ 𝐺))𝑀 → (𝐹 ∘ ((𝑃𝐵) ∘ 𝐺)) ≠ ∅)
10 fvprc 6867 . . . . . . . . . . . . 13 𝐵 ∈ V → (𝑃𝐵) = ∅)
1110dmeqd 5885 . . . . . . . . . . . 12 𝐵 ∈ V → dom (𝑃𝐵) = dom ∅)
12 dm0 5900 . . . . . . . . . . . 12 dom ∅ = ∅
1311, 12eqtrdi 2786 . . . . . . . . . . 11 𝐵 ∈ V → dom (𝑃𝐵) = ∅)
1413ineq1d 4194 . . . . . . . . . 10 𝐵 ∈ V → (dom (𝑃𝐵) ∩ ran 𝐺) = (∅ ∩ ran 𝐺))
15 0in 4372 . . . . . . . . . 10 (∅ ∩ ran 𝐺) = ∅
1614, 15eqtrdi 2786 . . . . . . . . 9 𝐵 ∈ V → (dom (𝑃𝐵) ∩ ran 𝐺) = ∅)
1716coemptyd 14996 . . . . . . . 8 𝐵 ∈ V → ((𝑃𝐵) ∘ 𝐺) = ∅)
1817rneqd 5918 . . . . . . 7 𝐵 ∈ V → ran ((𝑃𝐵) ∘ 𝐺) = ran ∅)
19 rn0 5905 . . . . . . 7 ran ∅ = ∅
2018, 19eqtrdi 2786 . . . . . 6 𝐵 ∈ V → ran ((𝑃𝐵) ∘ 𝐺) = ∅)
2120ineq2d 4195 . . . . 5 𝐵 ∈ V → (dom 𝐹 ∩ ran ((𝑃𝐵) ∘ 𝐺)) = (dom 𝐹 ∩ ∅))
22 in0 4370 . . . . 5 (dom 𝐹 ∩ ∅) = ∅
2321, 22eqtrdi 2786 . . . 4 𝐵 ∈ V → (dom 𝐹 ∩ ran ((𝑃𝐵) ∘ 𝐺)) = ∅)
2423coemptyd 14996 . . 3 𝐵 ∈ V → (𝐹 ∘ ((𝑃𝐵) ∘ 𝐺)) = ∅)
2524necon1ai 2959 . 2 ((𝐹 ∘ ((𝑃𝐵) ∘ 𝐺)) ≠ ∅ → 𝐵 ∈ V)
268, 9, 253syl 18 1 (𝜑𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  cin 3925  c0 4308   class class class wbr 5119  dom cdm 5654  ran crn 5655  ccom 5658  cfv 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-iota 6483  df-fv 6538
This theorem is referenced by:  neicvgrcomplex  44084  neicvgf1o  44085  neicvgnvo  44086  neicvgmex  44088  neicvgel1  44090
  Copyright terms: Public domain W3C validator