Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neicvgbex Structured version   Visualization version   GIF version

Theorem neicvgbex 44074
Description: If (pseudo-)neighborhood and (pseudo-)convergent functions are related by the composite operator, 𝐻, then the base set exists. (Contributed by RP, 4-Jun-2021.)
Hypotheses
Ref Expression
neicvgbex.d 𝐷 = (𝑃𝐵)
neicvgbex.h 𝐻 = (𝐹 ∘ (𝐷𝐺))
neicvgbex.r (𝜑𝑁𝐻𝑀)
Assertion
Ref Expression
neicvgbex (𝜑𝐵 ∈ V)

Proof of Theorem neicvgbex
StepHypRef Expression
1 neicvgbex.h . . . . 5 𝐻 = (𝐹 ∘ (𝐷𝐺))
2 neicvgbex.d . . . . . . 7 𝐷 = (𝑃𝐵)
32coeq1i 5884 . . . . . 6 (𝐷𝐺) = ((𝑃𝐵) ∘ 𝐺)
43coeq2i 5885 . . . . 5 (𝐹 ∘ (𝐷𝐺)) = (𝐹 ∘ ((𝑃𝐵) ∘ 𝐺))
51, 4eqtri 2768 . . . 4 𝐻 = (𝐹 ∘ ((𝑃𝐵) ∘ 𝐺))
65a1i 11 . . 3 (𝜑𝐻 = (𝐹 ∘ ((𝑃𝐵) ∘ 𝐺)))
7 neicvgbex.r . . 3 (𝜑𝑁𝐻𝑀)
86, 7breqdi 5181 . 2 (𝜑𝑁(𝐹 ∘ ((𝑃𝐵) ∘ 𝐺))𝑀)
9 brne0 5216 . 2 (𝑁(𝐹 ∘ ((𝑃𝐵) ∘ 𝐺))𝑀 → (𝐹 ∘ ((𝑃𝐵) ∘ 𝐺)) ≠ ∅)
10 fvprc 6912 . . . . . . . . . . . . 13 𝐵 ∈ V → (𝑃𝐵) = ∅)
1110dmeqd 5930 . . . . . . . . . . . 12 𝐵 ∈ V → dom (𝑃𝐵) = dom ∅)
12 dm0 5945 . . . . . . . . . . . 12 dom ∅ = ∅
1311, 12eqtrdi 2796 . . . . . . . . . . 11 𝐵 ∈ V → dom (𝑃𝐵) = ∅)
1413ineq1d 4240 . . . . . . . . . 10 𝐵 ∈ V → (dom (𝑃𝐵) ∩ ran 𝐺) = (∅ ∩ ran 𝐺))
15 0in 4420 . . . . . . . . . 10 (∅ ∩ ran 𝐺) = ∅
1614, 15eqtrdi 2796 . . . . . . . . 9 𝐵 ∈ V → (dom (𝑃𝐵) ∩ ran 𝐺) = ∅)
1716coemptyd 15028 . . . . . . . 8 𝐵 ∈ V → ((𝑃𝐵) ∘ 𝐺) = ∅)
1817rneqd 5963 . . . . . . 7 𝐵 ∈ V → ran ((𝑃𝐵) ∘ 𝐺) = ran ∅)
19 rn0 5950 . . . . . . 7 ran ∅ = ∅
2018, 19eqtrdi 2796 . . . . . 6 𝐵 ∈ V → ran ((𝑃𝐵) ∘ 𝐺) = ∅)
2120ineq2d 4241 . . . . 5 𝐵 ∈ V → (dom 𝐹 ∩ ran ((𝑃𝐵) ∘ 𝐺)) = (dom 𝐹 ∩ ∅))
22 in0 4418 . . . . 5 (dom 𝐹 ∩ ∅) = ∅
2321, 22eqtrdi 2796 . . . 4 𝐵 ∈ V → (dom 𝐹 ∩ ran ((𝑃𝐵) ∘ 𝐺)) = ∅)
2423coemptyd 15028 . . 3 𝐵 ∈ V → (𝐹 ∘ ((𝑃𝐵) ∘ 𝐺)) = ∅)
2524necon1ai 2974 . 2 ((𝐹 ∘ ((𝑃𝐵) ∘ 𝐺)) ≠ ∅ → 𝐵 ∈ V)
268, 9, 253syl 18 1 (𝜑𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  cin 3975  c0 4352   class class class wbr 5166  dom cdm 5700  ran crn 5701  ccom 5704  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-iota 6525  df-fv 6581
This theorem is referenced by:  neicvgrcomplex  44075  neicvgf1o  44076  neicvgnvo  44077  neicvgmex  44079  neicvgel1  44081
  Copyright terms: Public domain W3C validator