Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > neicvgbex | Structured version Visualization version GIF version |
Description: If (pseudo-)neighborhood and (pseudo-)convergent functions are related by the composite operator, 𝐻, then the base set exists. (Contributed by RP, 4-Jun-2021.) |
Ref | Expression |
---|---|
neicvgbex.d | ⊢ 𝐷 = (𝑃‘𝐵) |
neicvgbex.h | ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) |
neicvgbex.r | ⊢ (𝜑 → 𝑁𝐻𝑀) |
Ref | Expression |
---|---|
neicvgbex | ⊢ (𝜑 → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neicvgbex.h | . . . . 5 ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
2 | neicvgbex.d | . . . . . . 7 ⊢ 𝐷 = (𝑃‘𝐵) | |
3 | 2 | coeq1i 5768 | . . . . . 6 ⊢ (𝐷 ∘ 𝐺) = ((𝑃‘𝐵) ∘ 𝐺) |
4 | 3 | coeq2i 5769 | . . . . 5 ⊢ (𝐹 ∘ (𝐷 ∘ 𝐺)) = (𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺)) |
5 | 1, 4 | eqtri 2766 | . . . 4 ⊢ 𝐻 = (𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺)) |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐻 = (𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺))) |
7 | neicvgbex.r | . . 3 ⊢ (𝜑 → 𝑁𝐻𝑀) | |
8 | 6, 7 | breqdi 5089 | . 2 ⊢ (𝜑 → 𝑁(𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺))𝑀) |
9 | brne0 5124 | . 2 ⊢ (𝑁(𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺))𝑀 → (𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺)) ≠ ∅) | |
10 | fvprc 6766 | . . . . . . . . . . . . 13 ⊢ (¬ 𝐵 ∈ V → (𝑃‘𝐵) = ∅) | |
11 | 10 | dmeqd 5814 | . . . . . . . . . . . 12 ⊢ (¬ 𝐵 ∈ V → dom (𝑃‘𝐵) = dom ∅) |
12 | dm0 5829 | . . . . . . . . . . . 12 ⊢ dom ∅ = ∅ | |
13 | 11, 12 | eqtrdi 2794 | . . . . . . . . . . 11 ⊢ (¬ 𝐵 ∈ V → dom (𝑃‘𝐵) = ∅) |
14 | 13 | ineq1d 4145 | . . . . . . . . . 10 ⊢ (¬ 𝐵 ∈ V → (dom (𝑃‘𝐵) ∩ ran 𝐺) = (∅ ∩ ran 𝐺)) |
15 | 0in 4327 | . . . . . . . . . 10 ⊢ (∅ ∩ ran 𝐺) = ∅ | |
16 | 14, 15 | eqtrdi 2794 | . . . . . . . . 9 ⊢ (¬ 𝐵 ∈ V → (dom (𝑃‘𝐵) ∩ ran 𝐺) = ∅) |
17 | 16 | coemptyd 14690 | . . . . . . . 8 ⊢ (¬ 𝐵 ∈ V → ((𝑃‘𝐵) ∘ 𝐺) = ∅) |
18 | 17 | rneqd 5847 | . . . . . . 7 ⊢ (¬ 𝐵 ∈ V → ran ((𝑃‘𝐵) ∘ 𝐺) = ran ∅) |
19 | rn0 5835 | . . . . . . 7 ⊢ ran ∅ = ∅ | |
20 | 18, 19 | eqtrdi 2794 | . . . . . 6 ⊢ (¬ 𝐵 ∈ V → ran ((𝑃‘𝐵) ∘ 𝐺) = ∅) |
21 | 20 | ineq2d 4146 | . . . . 5 ⊢ (¬ 𝐵 ∈ V → (dom 𝐹 ∩ ran ((𝑃‘𝐵) ∘ 𝐺)) = (dom 𝐹 ∩ ∅)) |
22 | in0 4325 | . . . . 5 ⊢ (dom 𝐹 ∩ ∅) = ∅ | |
23 | 21, 22 | eqtrdi 2794 | . . . 4 ⊢ (¬ 𝐵 ∈ V → (dom 𝐹 ∩ ran ((𝑃‘𝐵) ∘ 𝐺)) = ∅) |
24 | 23 | coemptyd 14690 | . . 3 ⊢ (¬ 𝐵 ∈ V → (𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺)) = ∅) |
25 | 24 | necon1ai 2971 | . 2 ⊢ ((𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺)) ≠ ∅ → 𝐵 ∈ V) |
26 | 8, 9, 25 | 3syl 18 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ∩ cin 3886 ∅c0 4256 class class class wbr 5074 dom cdm 5589 ran crn 5590 ∘ ccom 5593 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-iota 6391 df-fv 6441 |
This theorem is referenced by: neicvgrcomplex 41723 neicvgf1o 41724 neicvgnvo 41725 neicvgmex 41727 neicvgel1 41729 |
Copyright terms: Public domain | W3C validator |