![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > neicvgbex | Structured version Visualization version GIF version |
Description: If (pseudo-)neighborhood and (pseudo-)convergent functions are related by the composite operator, 𝐻, then the base set exists. (Contributed by RP, 4-Jun-2021.) |
Ref | Expression |
---|---|
neicvgbex.d | ⊢ 𝐷 = (𝑃‘𝐵) |
neicvgbex.h | ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) |
neicvgbex.r | ⊢ (𝜑 → 𝑁𝐻𝑀) |
Ref | Expression |
---|---|
neicvgbex | ⊢ (𝜑 → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neicvgbex.h | . . . . 5 ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
2 | neicvgbex.d | . . . . . . 7 ⊢ 𝐷 = (𝑃‘𝐵) | |
3 | 2 | coeq1i 5859 | . . . . . 6 ⊢ (𝐷 ∘ 𝐺) = ((𝑃‘𝐵) ∘ 𝐺) |
4 | 3 | coeq2i 5860 | . . . . 5 ⊢ (𝐹 ∘ (𝐷 ∘ 𝐺)) = (𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺)) |
5 | 1, 4 | eqtri 2760 | . . . 4 ⊢ 𝐻 = (𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺)) |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐻 = (𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺))) |
7 | neicvgbex.r | . . 3 ⊢ (𝜑 → 𝑁𝐻𝑀) | |
8 | 6, 7 | breqdi 5163 | . 2 ⊢ (𝜑 → 𝑁(𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺))𝑀) |
9 | brne0 5198 | . 2 ⊢ (𝑁(𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺))𝑀 → (𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺)) ≠ ∅) | |
10 | fvprc 6883 | . . . . . . . . . . . . 13 ⊢ (¬ 𝐵 ∈ V → (𝑃‘𝐵) = ∅) | |
11 | 10 | dmeqd 5905 | . . . . . . . . . . . 12 ⊢ (¬ 𝐵 ∈ V → dom (𝑃‘𝐵) = dom ∅) |
12 | dm0 5920 | . . . . . . . . . . . 12 ⊢ dom ∅ = ∅ | |
13 | 11, 12 | eqtrdi 2788 | . . . . . . . . . . 11 ⊢ (¬ 𝐵 ∈ V → dom (𝑃‘𝐵) = ∅) |
14 | 13 | ineq1d 4211 | . . . . . . . . . 10 ⊢ (¬ 𝐵 ∈ V → (dom (𝑃‘𝐵) ∩ ran 𝐺) = (∅ ∩ ran 𝐺)) |
15 | 0in 4393 | . . . . . . . . . 10 ⊢ (∅ ∩ ran 𝐺) = ∅ | |
16 | 14, 15 | eqtrdi 2788 | . . . . . . . . 9 ⊢ (¬ 𝐵 ∈ V → (dom (𝑃‘𝐵) ∩ ran 𝐺) = ∅) |
17 | 16 | coemptyd 14925 | . . . . . . . 8 ⊢ (¬ 𝐵 ∈ V → ((𝑃‘𝐵) ∘ 𝐺) = ∅) |
18 | 17 | rneqd 5937 | . . . . . . 7 ⊢ (¬ 𝐵 ∈ V → ran ((𝑃‘𝐵) ∘ 𝐺) = ran ∅) |
19 | rn0 5925 | . . . . . . 7 ⊢ ran ∅ = ∅ | |
20 | 18, 19 | eqtrdi 2788 | . . . . . 6 ⊢ (¬ 𝐵 ∈ V → ran ((𝑃‘𝐵) ∘ 𝐺) = ∅) |
21 | 20 | ineq2d 4212 | . . . . 5 ⊢ (¬ 𝐵 ∈ V → (dom 𝐹 ∩ ran ((𝑃‘𝐵) ∘ 𝐺)) = (dom 𝐹 ∩ ∅)) |
22 | in0 4391 | . . . . 5 ⊢ (dom 𝐹 ∩ ∅) = ∅ | |
23 | 21, 22 | eqtrdi 2788 | . . . 4 ⊢ (¬ 𝐵 ∈ V → (dom 𝐹 ∩ ran ((𝑃‘𝐵) ∘ 𝐺)) = ∅) |
24 | 23 | coemptyd 14925 | . . 3 ⊢ (¬ 𝐵 ∈ V → (𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺)) = ∅) |
25 | 24 | necon1ai 2968 | . 2 ⊢ ((𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺)) ≠ ∅ → 𝐵 ∈ V) |
26 | 8, 9, 25 | 3syl 18 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 Vcvv 3474 ∩ cin 3947 ∅c0 4322 class class class wbr 5148 dom cdm 5676 ran crn 5677 ∘ ccom 5680 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-iota 6495 df-fv 6551 |
This theorem is referenced by: neicvgrcomplex 42854 neicvgf1o 42855 neicvgnvo 42856 neicvgmex 42858 neicvgel1 42860 |
Copyright terms: Public domain | W3C validator |