![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > neicvgbex | Structured version Visualization version GIF version |
Description: If (pseudo-)neighborhood and (pseudo-)convergent functions are related by the composite operator, 𝐻, then the base set exists. (Contributed by RP, 4-Jun-2021.) |
Ref | Expression |
---|---|
neicvgbex.d | ⊢ 𝐷 = (𝑃‘𝐵) |
neicvgbex.h | ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) |
neicvgbex.r | ⊢ (𝜑 → 𝑁𝐻𝑀) |
Ref | Expression |
---|---|
neicvgbex | ⊢ (𝜑 → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neicvgbex.h | . . . . 5 ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
2 | neicvgbex.d | . . . . . . 7 ⊢ 𝐷 = (𝑃‘𝐵) | |
3 | 2 | coeq1i 5884 | . . . . . 6 ⊢ (𝐷 ∘ 𝐺) = ((𝑃‘𝐵) ∘ 𝐺) |
4 | 3 | coeq2i 5885 | . . . . 5 ⊢ (𝐹 ∘ (𝐷 ∘ 𝐺)) = (𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺)) |
5 | 1, 4 | eqtri 2768 | . . . 4 ⊢ 𝐻 = (𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺)) |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐻 = (𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺))) |
7 | neicvgbex.r | . . 3 ⊢ (𝜑 → 𝑁𝐻𝑀) | |
8 | 6, 7 | breqdi 5181 | . 2 ⊢ (𝜑 → 𝑁(𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺))𝑀) |
9 | brne0 5216 | . 2 ⊢ (𝑁(𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺))𝑀 → (𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺)) ≠ ∅) | |
10 | fvprc 6912 | . . . . . . . . . . . . 13 ⊢ (¬ 𝐵 ∈ V → (𝑃‘𝐵) = ∅) | |
11 | 10 | dmeqd 5930 | . . . . . . . . . . . 12 ⊢ (¬ 𝐵 ∈ V → dom (𝑃‘𝐵) = dom ∅) |
12 | dm0 5945 | . . . . . . . . . . . 12 ⊢ dom ∅ = ∅ | |
13 | 11, 12 | eqtrdi 2796 | . . . . . . . . . . 11 ⊢ (¬ 𝐵 ∈ V → dom (𝑃‘𝐵) = ∅) |
14 | 13 | ineq1d 4240 | . . . . . . . . . 10 ⊢ (¬ 𝐵 ∈ V → (dom (𝑃‘𝐵) ∩ ran 𝐺) = (∅ ∩ ran 𝐺)) |
15 | 0in 4420 | . . . . . . . . . 10 ⊢ (∅ ∩ ran 𝐺) = ∅ | |
16 | 14, 15 | eqtrdi 2796 | . . . . . . . . 9 ⊢ (¬ 𝐵 ∈ V → (dom (𝑃‘𝐵) ∩ ran 𝐺) = ∅) |
17 | 16 | coemptyd 15028 | . . . . . . . 8 ⊢ (¬ 𝐵 ∈ V → ((𝑃‘𝐵) ∘ 𝐺) = ∅) |
18 | 17 | rneqd 5963 | . . . . . . 7 ⊢ (¬ 𝐵 ∈ V → ran ((𝑃‘𝐵) ∘ 𝐺) = ran ∅) |
19 | rn0 5950 | . . . . . . 7 ⊢ ran ∅ = ∅ | |
20 | 18, 19 | eqtrdi 2796 | . . . . . 6 ⊢ (¬ 𝐵 ∈ V → ran ((𝑃‘𝐵) ∘ 𝐺) = ∅) |
21 | 20 | ineq2d 4241 | . . . . 5 ⊢ (¬ 𝐵 ∈ V → (dom 𝐹 ∩ ran ((𝑃‘𝐵) ∘ 𝐺)) = (dom 𝐹 ∩ ∅)) |
22 | in0 4418 | . . . . 5 ⊢ (dom 𝐹 ∩ ∅) = ∅ | |
23 | 21, 22 | eqtrdi 2796 | . . . 4 ⊢ (¬ 𝐵 ∈ V → (dom 𝐹 ∩ ran ((𝑃‘𝐵) ∘ 𝐺)) = ∅) |
24 | 23 | coemptyd 15028 | . . 3 ⊢ (¬ 𝐵 ∈ V → (𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺)) = ∅) |
25 | 24 | necon1ai 2974 | . 2 ⊢ ((𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺)) ≠ ∅ → 𝐵 ∈ V) |
26 | 8, 9, 25 | 3syl 18 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ∩ cin 3975 ∅c0 4352 class class class wbr 5166 dom cdm 5700 ran crn 5701 ∘ ccom 5704 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-iota 6525 df-fv 6581 |
This theorem is referenced by: neicvgrcomplex 44075 neicvgf1o 44076 neicvgnvo 44077 neicvgmex 44079 neicvgel1 44081 |
Copyright terms: Public domain | W3C validator |