| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brovmptimex | Structured version Visualization version GIF version | ||
| Description: If a binary relation holds and the relation is the value of a binary operation built with maps-to, then the arguments to that operation are sets. (Contributed by RP, 22-May-2021.) |
| Ref | Expression |
|---|---|
| brovmptimex.mpt | ⊢ 𝐹 = (𝑥 ∈ 𝐸, 𝑦 ∈ 𝐺 ↦ 𝐻) |
| brovmptimex.br | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| brovmptimex.ov | ⊢ (𝜑 → 𝑅 = (𝐶𝐹𝐷)) |
| Ref | Expression |
|---|---|
| brovmptimex | ⊢ (𝜑 → (𝐶 ∈ V ∧ 𝐷 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brovmptimex.ov | . . 3 ⊢ (𝜑 → 𝑅 = (𝐶𝐹𝐷)) | |
| 2 | brovmptimex.br | . . 3 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 3 | 1, 2 | breqdi 5107 | . 2 ⊢ (𝜑 → 𝐴(𝐶𝐹𝐷)𝐵) |
| 4 | brne0 5142 | . 2 ⊢ (𝐴(𝐶𝐹𝐷)𝐵 → (𝐶𝐹𝐷) ≠ ∅) | |
| 5 | brovmptimex.mpt | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐸, 𝑦 ∈ 𝐺 ↦ 𝐻) | |
| 6 | 5 | reldmmpo 7483 | . . . 4 ⊢ Rel dom 𝐹 |
| 7 | 6 | ovprc 7387 | . . 3 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶𝐹𝐷) = ∅) |
| 8 | 7 | necon1ai 2952 | . 2 ⊢ ((𝐶𝐹𝐷) ≠ ∅ → (𝐶 ∈ V ∧ 𝐷 ∈ V)) |
| 9 | 3, 4, 8 | 3syl 18 | 1 ⊢ (𝜑 → (𝐶 ∈ V ∧ 𝐷 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3436 ∅c0 4284 class class class wbr 5092 (class class class)co 7349 ∈ cmpo 7351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-dm 5629 df-iota 6438 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 |
| This theorem is referenced by: brovmptimex1 44001 brovmptimex2 44002 |
| Copyright terms: Public domain | W3C validator |