Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brovmptimex Structured version   Visualization version   GIF version

Theorem brovmptimex 41607
Description: If a binary relation holds and the relation is the value of a binary operation built with maps-to, then the arguments to that operation are sets. (Contributed by RP, 22-May-2021.)
Hypotheses
Ref Expression
brovmptimex.mpt 𝐹 = (𝑥𝐸, 𝑦𝐺𝐻)
brovmptimex.br (𝜑𝐴𝑅𝐵)
brovmptimex.ov (𝜑𝑅 = (𝐶𝐹𝐷))
Assertion
Ref Expression
brovmptimex (𝜑 → (𝐶 ∈ V ∧ 𝐷 ∈ V))
Distinct variable groups:   𝑥,𝐸,𝑦   𝑦,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem brovmptimex
StepHypRef Expression
1 brovmptimex.ov . . 3 (𝜑𝑅 = (𝐶𝐹𝐷))
2 brovmptimex.br . . 3 (𝜑𝐴𝑅𝐵)
31, 2breqdi 5094 . 2 (𝜑𝐴(𝐶𝐹𝐷)𝐵)
4 brne0 5129 . 2 (𝐴(𝐶𝐹𝐷)𝐵 → (𝐶𝐹𝐷) ≠ ∅)
5 brovmptimex.mpt . . . . 5 𝐹 = (𝑥𝐸, 𝑦𝐺𝐻)
65reldmmpo 7402 . . . 4 Rel dom 𝐹
76ovprc 7309 . . 3 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶𝐹𝐷) = ∅)
87necon1ai 2973 . 2 ((𝐶𝐹𝐷) ≠ ∅ → (𝐶 ∈ V ∧ 𝐷 ∈ V))
93, 4, 83syl 18 1 (𝜑 → (𝐶 ∈ V ∧ 𝐷 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  wne 2945  Vcvv 3431  c0 4262   class class class wbr 5079  (class class class)co 7271  cmpo 7273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-xp 5596  df-rel 5597  df-dm 5600  df-iota 6390  df-fv 6440  df-ov 7274  df-oprab 7275  df-mpo 7276
This theorem is referenced by:  brovmptimex1  41608  brovmptimex2  41609
  Copyright terms: Public domain W3C validator