![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brovmptimex | Structured version Visualization version GIF version |
Description: If a binary relation holds and the relation is the value of a binary operation built with maps-to, then the arguments to that operation are sets. (Contributed by RP, 22-May-2021.) |
Ref | Expression |
---|---|
brovmptimex.mpt | ⊢ 𝐹 = (𝑥 ∈ 𝐸, 𝑦 ∈ 𝐺 ↦ 𝐻) |
brovmptimex.br | ⊢ (𝜑 → 𝐴𝑅𝐵) |
brovmptimex.ov | ⊢ (𝜑 → 𝑅 = (𝐶𝐹𝐷)) |
Ref | Expression |
---|---|
brovmptimex | ⊢ (𝜑 → (𝐶 ∈ V ∧ 𝐷 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brovmptimex.ov | . . 3 ⊢ (𝜑 → 𝑅 = (𝐶𝐹𝐷)) | |
2 | brovmptimex.br | . . 3 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
3 | 1, 2 | breqdi 5163 | . 2 ⊢ (𝜑 → 𝐴(𝐶𝐹𝐷)𝐵) |
4 | brne0 5198 | . 2 ⊢ (𝐴(𝐶𝐹𝐷)𝐵 → (𝐶𝐹𝐷) ≠ ∅) | |
5 | brovmptimex.mpt | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐸, 𝑦 ∈ 𝐺 ↦ 𝐻) | |
6 | 5 | reldmmpo 7542 | . . . 4 ⊢ Rel dom 𝐹 |
7 | 6 | ovprc 7446 | . . 3 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶𝐹𝐷) = ∅) |
8 | 7 | necon1ai 2968 | . 2 ⊢ ((𝐶𝐹𝐷) ≠ ∅ → (𝐶 ∈ V ∧ 𝐷 ∈ V)) |
9 | 3, 4, 8 | 3syl 18 | 1 ⊢ (𝜑 → (𝐶 ∈ V ∧ 𝐷 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 Vcvv 3474 ∅c0 4322 class class class wbr 5148 (class class class)co 7408 ∈ cmpo 7410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-dm 5686 df-iota 6495 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 |
This theorem is referenced by: brovmptimex1 42769 brovmptimex2 42770 |
Copyright terms: Public domain | W3C validator |