| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isleagd | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for "less than" angle relation, deduction version (Contributed by Thierry Arnoux, 12-Oct-2020.) |
| Ref | Expression |
|---|---|
| isleag.p | ⊢ 𝑃 = (Base‘𝐺) |
| isleag.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| isleag.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| isleag.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| isleag.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| isleag.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| isleag.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
| isleag.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
| isleagd.s | ⊢ ≤ = (≤∠‘𝐺) |
| isleagd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| isleagd.1 | ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐷𝐸𝐹”〉) |
| isleagd.2 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑋”〉) |
| Ref | Expression |
|---|---|
| isleagd | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ≤ 〈“𝐷𝐸𝐹”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isleagd.s | . . . 4 ⊢ ≤ = (≤∠‘𝐺) | |
| 2 | 1 | eqcomi 2744 | . . 3 ⊢ (≤∠‘𝐺) = ≤ |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (≤∠‘𝐺) = ≤ ) |
| 4 | isleagd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 5 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
| 6 | 5 | breq1d 5129 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ 𝑋(inA‘𝐺)〈“𝐷𝐸𝐹”〉)) |
| 7 | eqidd 2736 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝐷 = 𝐷) | |
| 8 | eqidd 2736 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝐸 = 𝐸) | |
| 9 | 7, 8, 5 | s3eqd 14883 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 〈“𝐷𝐸𝑥”〉 = 〈“𝐷𝐸𝑋”〉) |
| 10 | 9 | breq2d 5131 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉 ↔ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑋”〉)) |
| 11 | 6, 10 | anbi12d 632 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉) ↔ (𝑋(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑋”〉))) |
| 12 | isleagd.1 | . . . . 5 ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐷𝐸𝐹”〉) | |
| 13 | isleagd.2 | . . . . 5 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑋”〉) | |
| 14 | 12, 13 | jca 511 | . . . 4 ⊢ (𝜑 → (𝑋(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑋”〉)) |
| 15 | 4, 11, 14 | rspcedvd 3603 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)) |
| 16 | isleag.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 17 | isleag.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 18 | isleag.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 19 | isleag.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 20 | isleag.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 21 | isleag.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 22 | isleag.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
| 23 | isleag.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
| 24 | 16, 17, 18, 19, 20, 21, 22, 23 | isleag 28826 | . . 3 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(≤∠‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉))) |
| 25 | 15, 24 | mpbird 257 | . 2 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(≤∠‘𝐺)〈“𝐷𝐸𝐹”〉) |
| 26 | 3, 25 | breqdi 5134 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ≤ 〈“𝐷𝐸𝐹”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 class class class wbr 5119 ‘cfv 6531 〈“cs3 14861 Basecbs 17228 TarskiGcstrkg 28406 cgrAccgra 28786 inAcinag 28814 ≤∠cleag 28815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-hash 14349 df-word 14532 df-concat 14589 df-s1 14614 df-s2 14867 df-s3 14868 df-leag 28825 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |