![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isleagd | Structured version Visualization version GIF version |
Description: Sufficient condition for "less than" angle relation, deduction version (Contributed by Thierry Arnoux, 12-Oct-2020.) |
Ref | Expression |
---|---|
isleag.p | ⊢ 𝑃 = (Base‘𝐺) |
isleag.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
isleag.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
isleag.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
isleag.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
isleag.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
isleag.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
isleag.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
isleagd.s | ⊢ ≤ = (≤∠‘𝐺) |
isleagd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
isleagd.1 | ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐷𝐸𝐹”〉) |
isleagd.2 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑋”〉) |
Ref | Expression |
---|---|
isleagd | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ≤ 〈“𝐷𝐸𝐹”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isleagd.s | . . . 4 ⊢ ≤ = (≤∠‘𝐺) | |
2 | 1 | eqcomi 2744 | . . 3 ⊢ (≤∠‘𝐺) = ≤ |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (≤∠‘𝐺) = ≤ ) |
4 | isleagd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
5 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
6 | 5 | breq1d 5158 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ 𝑋(inA‘𝐺)〈“𝐷𝐸𝐹”〉)) |
7 | eqidd 2736 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝐷 = 𝐷) | |
8 | eqidd 2736 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝐸 = 𝐸) | |
9 | 7, 8, 5 | s3eqd 14900 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 〈“𝐷𝐸𝑥”〉 = 〈“𝐷𝐸𝑋”〉) |
10 | 9 | breq2d 5160 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉 ↔ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑋”〉)) |
11 | 6, 10 | anbi12d 632 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉) ↔ (𝑋(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑋”〉))) |
12 | isleagd.1 | . . . . 5 ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐷𝐸𝐹”〉) | |
13 | isleagd.2 | . . . . 5 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑋”〉) | |
14 | 12, 13 | jca 511 | . . . 4 ⊢ (𝜑 → (𝑋(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑋”〉)) |
15 | 4, 11, 14 | rspcedvd 3624 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)) |
16 | isleag.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
17 | isleag.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
18 | isleag.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
19 | isleag.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
20 | isleag.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
21 | isleag.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
22 | isleag.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
23 | isleag.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
24 | 16, 17, 18, 19, 20, 21, 22, 23 | isleag 28870 | . . 3 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(≤∠‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉))) |
25 | 15, 24 | mpbird 257 | . 2 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(≤∠‘𝐺)〈“𝐷𝐸𝐹”〉) |
26 | 3, 25 | breqdi 5163 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ≤ 〈“𝐷𝐸𝐹”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 class class class wbr 5148 ‘cfv 6563 〈“cs3 14878 Basecbs 17245 TarskiGcstrkg 28450 cgrAccgra 28830 inAcinag 28858 ≤∠cleag 28859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-concat 14606 df-s1 14631 df-s2 14884 df-s3 14885 df-leag 28869 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |