Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isleagd | Structured version Visualization version GIF version |
Description: Sufficient condition for "less than" angle relation, deduction version (Contributed by Thierry Arnoux, 12-Oct-2020.) |
Ref | Expression |
---|---|
isleag.p | ⊢ 𝑃 = (Base‘𝐺) |
isleag.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
isleag.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
isleag.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
isleag.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
isleag.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
isleag.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
isleag.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
isleagd.s | ⊢ ≤ = (≤∠‘𝐺) |
isleagd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
isleagd.1 | ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐷𝐸𝐹”〉) |
isleagd.2 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑋”〉) |
Ref | Expression |
---|---|
isleagd | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ≤ 〈“𝐷𝐸𝐹”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isleagd.s | . . . 4 ⊢ ≤ = (≤∠‘𝐺) | |
2 | 1 | eqcomi 2746 | . . 3 ⊢ (≤∠‘𝐺) = ≤ |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (≤∠‘𝐺) = ≤ ) |
4 | isleagd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
5 | simpr 486 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
6 | 5 | breq1d 5107 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ 𝑋(inA‘𝐺)〈“𝐷𝐸𝐹”〉)) |
7 | eqidd 2738 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝐷 = 𝐷) | |
8 | eqidd 2738 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝐸 = 𝐸) | |
9 | 7, 8, 5 | s3eqd 14677 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 〈“𝐷𝐸𝑥”〉 = 〈“𝐷𝐸𝑋”〉) |
10 | 9 | breq2d 5109 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉 ↔ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑋”〉)) |
11 | 6, 10 | anbi12d 632 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉) ↔ (𝑋(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑋”〉))) |
12 | isleagd.1 | . . . . 5 ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐷𝐸𝐹”〉) | |
13 | isleagd.2 | . . . . 5 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑋”〉) | |
14 | 12, 13 | jca 513 | . . . 4 ⊢ (𝜑 → (𝑋(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑋”〉)) |
15 | 4, 11, 14 | rspcedvd 3576 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)) |
16 | isleag.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
17 | isleag.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
18 | isleag.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
19 | isleag.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
20 | isleag.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
21 | isleag.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
22 | isleag.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
23 | isleag.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
24 | 16, 17, 18, 19, 20, 21, 22, 23 | isleag 27497 | . . 3 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(≤∠‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉))) |
25 | 15, 24 | mpbird 257 | . 2 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(≤∠‘𝐺)〈“𝐷𝐸𝐹”〉) |
26 | 3, 25 | breqdi 5112 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ≤ 〈“𝐷𝐸𝐹”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∃wrex 3071 class class class wbr 5097 ‘cfv 6484 〈“cs3 14655 Basecbs 17010 TarskiGcstrkg 27077 cgrAccgra 27457 inAcinag 27485 ≤∠cleag 27486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-er 8574 df-map 8693 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-card 9801 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-2 12142 df-3 12143 df-n0 12340 df-z 12426 df-uz 12689 df-fz 13346 df-fzo 13489 df-hash 14151 df-word 14323 df-concat 14379 df-s1 14404 df-s2 14661 df-s3 14662 df-leag 27496 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |