Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brfvimex Structured version   Visualization version   GIF version

Theorem brfvimex 44118
Description: If a binary relation holds and the relation is the value of a function, then the argument to that function is a set. (Contributed by RP, 22-May-2021.)
Hypotheses
Ref Expression
brfvimex.br (𝜑𝐴𝑅𝐵)
brfvimex.fv (𝜑𝑅 = (𝐹𝐶))
Assertion
Ref Expression
brfvimex (𝜑𝐶 ∈ V)

Proof of Theorem brfvimex
StepHypRef Expression
1 brfvimex.fv . . 3 (𝜑𝑅 = (𝐹𝐶))
2 brfvimex.br . . 3 (𝜑𝐴𝑅𝐵)
31, 2breqdi 5104 . 2 (𝜑𝐴(𝐹𝐶)𝐵)
4 brne0 5139 . 2 (𝐴(𝐹𝐶)𝐵 → (𝐹𝐶) ≠ ∅)
5 fvprc 6814 . . 3 𝐶 ∈ V → (𝐹𝐶) = ∅)
65necon1ai 2955 . 2 ((𝐹𝐶) ≠ ∅ → 𝐶 ∈ V)
73, 4, 63syl 18 1 (𝜑𝐶 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  c0 4280   class class class wbr 5089  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489
This theorem is referenced by:  ntrclsbex  44126
  Copyright terms: Public domain W3C validator