![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brfvimex | Structured version Visualization version GIF version |
Description: If a binary relation holds and the relation is the value of a function, then the argument to that function is a set. (Contributed by RP, 22-May-2021.) |
Ref | Expression |
---|---|
brfvimex.br | ⊢ (𝜑 → 𝐴𝑅𝐵) |
brfvimex.fv | ⊢ (𝜑 → 𝑅 = (𝐹‘𝐶)) |
Ref | Expression |
---|---|
brfvimex | ⊢ (𝜑 → 𝐶 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brfvimex.fv | . . 3 ⊢ (𝜑 → 𝑅 = (𝐹‘𝐶)) | |
2 | brfvimex.br | . . 3 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
3 | 1, 2 | breqdi 5181 | . 2 ⊢ (𝜑 → 𝐴(𝐹‘𝐶)𝐵) |
4 | brne0 5216 | . 2 ⊢ (𝐴(𝐹‘𝐶)𝐵 → (𝐹‘𝐶) ≠ ∅) | |
5 | fvprc 6912 | . . 3 ⊢ (¬ 𝐶 ∈ V → (𝐹‘𝐶) = ∅) | |
6 | 5 | necon1ai 2974 | . 2 ⊢ ((𝐹‘𝐶) ≠ ∅ → 𝐶 ∈ V) |
7 | 3, 4, 6 | 3syl 18 | 1 ⊢ (𝜑 → 𝐶 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ∅c0 4352 class class class wbr 5166 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 |
This theorem is referenced by: ntrclsbex 43996 |
Copyright terms: Public domain | W3C validator |