Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brfvimex Structured version   Visualization version   GIF version

Theorem brfvimex 44015
Description: If a binary relation holds and the relation is the value of a function, then the argument to that function is a set. (Contributed by RP, 22-May-2021.)
Hypotheses
Ref Expression
brfvimex.br (𝜑𝐴𝑅𝐵)
brfvimex.fv (𝜑𝑅 = (𝐹𝐶))
Assertion
Ref Expression
brfvimex (𝜑𝐶 ∈ V)

Proof of Theorem brfvimex
StepHypRef Expression
1 brfvimex.fv . . 3 (𝜑𝑅 = (𝐹𝐶))
2 brfvimex.br . . 3 (𝜑𝐴𝑅𝐵)
31, 2breqdi 5122 . 2 (𝜑𝐴(𝐹𝐶)𝐵)
4 brne0 5157 . 2 (𝐴(𝐹𝐶)𝐵 → (𝐹𝐶) ≠ ∅)
5 fvprc 6850 . . 3 𝐶 ∈ V → (𝐹𝐶) = ∅)
65necon1ai 2952 . 2 ((𝐹𝐶) ≠ ∅ → 𝐶 ∈ V)
73, 4, 63syl 18 1 (𝜑𝐶 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  c0 4296   class class class wbr 5107  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519
This theorem is referenced by:  ntrclsbex  44023
  Copyright terms: Public domain W3C validator