Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brfvimex | Structured version Visualization version GIF version |
Description: If a binary relation holds and the relation is the value of a function, then the argument to that function is a set. (Contributed by RP, 22-May-2021.) |
Ref | Expression |
---|---|
brfvimex.br | ⊢ (𝜑 → 𝐴𝑅𝐵) |
brfvimex.fv | ⊢ (𝜑 → 𝑅 = (𝐹‘𝐶)) |
Ref | Expression |
---|---|
brfvimex | ⊢ (𝜑 → 𝐶 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brfvimex.fv | . . 3 ⊢ (𝜑 → 𝑅 = (𝐹‘𝐶)) | |
2 | brfvimex.br | . . 3 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
3 | 1, 2 | breqdi 5085 | . 2 ⊢ (𝜑 → 𝐴(𝐹‘𝐶)𝐵) |
4 | brne0 5120 | . 2 ⊢ (𝐴(𝐹‘𝐶)𝐵 → (𝐹‘𝐶) ≠ ∅) | |
5 | fvprc 6748 | . . 3 ⊢ (¬ 𝐶 ∈ V → (𝐹‘𝐶) = ∅) | |
6 | 5 | necon1ai 2970 | . 2 ⊢ ((𝐹‘𝐶) ≠ ∅ → 𝐶 ∈ V) |
7 | 3, 4, 6 | 3syl 18 | 1 ⊢ (𝜑 → 𝐶 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∅c0 4253 class class class wbr 5070 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 |
This theorem is referenced by: ntrclsbex 41533 |
Copyright terms: Public domain | W3C validator |