Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brfvimex Structured version   Visualization version   GIF version

Theorem brfvimex 41525
Description: If a binary relation holds and the relation is the value of a function, then the argument to that function is a set. (Contributed by RP, 22-May-2021.)
Hypotheses
Ref Expression
brfvimex.br (𝜑𝐴𝑅𝐵)
brfvimex.fv (𝜑𝑅 = (𝐹𝐶))
Assertion
Ref Expression
brfvimex (𝜑𝐶 ∈ V)

Proof of Theorem brfvimex
StepHypRef Expression
1 brfvimex.fv . . 3 (𝜑𝑅 = (𝐹𝐶))
2 brfvimex.br . . 3 (𝜑𝐴𝑅𝐵)
31, 2breqdi 5085 . 2 (𝜑𝐴(𝐹𝐶)𝐵)
4 brne0 5120 . 2 (𝐴(𝐹𝐶)𝐵 → (𝐹𝐶) ≠ ∅)
5 fvprc 6748 . . 3 𝐶 ∈ V → (𝐹𝐶) = ∅)
65necon1ai 2970 . 2 ((𝐹𝐶) ≠ ∅ → 𝐶 ∈ V)
73, 4, 63syl 18 1 (𝜑𝐶 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  c0 4253   class class class wbr 5070  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426
This theorem is referenced by:  ntrclsbex  41533
  Copyright terms: Public domain W3C validator