| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqan12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| breqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| breqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | breqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | breq12 5124 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 class class class wbr 5119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 |
| This theorem is referenced by: breqan12rd 5136 soisores 7320 isoid 7322 isores3 7328 isoini2 7332 ofrfvalg 7679 fnwelem 8130 fnse 8132 infsupprpr 9518 wemaplem1 9560 r0weon 10026 sornom 10291 enqbreq2 10934 nqereu 10943 ordpinq 10957 lterpq 10984 ltresr2 11155 axpre-ltadd 11181 leltadd 11721 lemul1a 12095 negiso 12222 xltneg 13233 lt2sq 14151 le2sq 14152 expmordi 14185 sqrtle 15279 prdsleval 17491 efgcpbllema 19735 iducn 24221 icopnfhmeo 24892 iccpnfhmeo 24894 xrhmeo 24895 reefiso 26410 sinord 26495 logltb 26561 logccv 26624 atanord 26889 birthdaylem3 26915 lgsquadlem3 27345 sltneg 28003 onsiso 28221 mddmd 32282 xrge0iifiso 33966 revwlkb 35148 erdszelem4 35216 erdszelem8 35220 satfv0 35380 cgrextend 36026 matunitlindf 37642 idlaut 40115 monotuz 42965 monotoddzzfi 42966 wepwsolem 43066 fnwe2val 43073 aomclem8 43085 isgrlim 47994 rrx2plord 48700 rrx2plordisom 48703 |
| Copyright terms: Public domain | W3C validator |