| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqan12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| breqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| breqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | breqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | breq12 5097 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 class class class wbr 5092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 |
| This theorem is referenced by: breqan12rd 5109 soisores 7264 isoid 7266 isores3 7272 isoini2 7276 ofrfvalg 7621 fnwelem 8064 fnse 8066 infsupprpr 9396 wemaplem1 9438 r0weon 9906 sornom 10171 enqbreq2 10814 nqereu 10823 ordpinq 10837 lterpq 10864 ltresr2 11035 axpre-ltadd 11061 leltadd 11604 lemul1a 11978 negiso 12105 xltneg 13119 lt2sq 14040 le2sq 14041 expmordi 14074 sqrtle 15167 prdsleval 17381 efgcpbllema 19633 iducn 24168 icopnfhmeo 24839 iccpnfhmeo 24841 xrhmeo 24842 reefiso 26356 sinord 26441 logltb 26507 logccv 26570 atanord 26835 birthdaylem3 26861 lgsquadlem3 27291 sltneg 27958 onsiso 28176 mddmd 32249 xrge0iifiso 33918 revwlkb 35119 erdszelem4 35187 erdszelem8 35191 satfv0 35351 cgrextend 36002 matunitlindf 37618 idlaut 40095 monotuz 42934 monotoddzzfi 42935 wepwsolem 43035 fnwe2val 43042 aomclem8 43054 isgrlim 47986 rrx2plord 48725 rrx2plordisom 48728 |
| Copyright terms: Public domain | W3C validator |