![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breqan12d | Structured version Visualization version GIF version |
Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
breqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
breqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | breqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | breq12 5171 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
4 | 1, 2, 3 | syl2an 595 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 class class class wbr 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 |
This theorem is referenced by: breqan12rd 5183 soisores 7363 isoid 7365 isores3 7371 isoini2 7375 ofrfvalg 7722 fnwelem 8172 fnse 8174 infsupprpr 9573 wemaplem1 9615 r0weon 10081 sornom 10346 enqbreq2 10989 nqereu 10998 ordpinq 11012 lterpq 11039 ltresr2 11210 axpre-ltadd 11236 leltadd 11774 lemul1a 12148 negiso 12275 xltneg 13279 lt2sq 14183 le2sq 14184 expmordi 14217 sqrtle 15309 prdsleval 17537 efgcpbllema 19796 iducn 24313 icopnfhmeo 24993 iccpnfhmeo 24995 xrhmeo 24996 reefiso 26510 sinord 26594 logltb 26660 logccv 26723 atanord 26988 birthdaylem3 27014 lgsquadlem3 27444 sltneg 28095 mddmd 32333 xrge0iifiso 33881 revwlkb 35093 erdszelem4 35162 erdszelem8 35166 satfv0 35326 cgrextend 35972 matunitlindf 37578 idlaut 40053 monotuz 42898 monotoddzzfi 42899 wepwsolem 42999 fnwe2val 43006 aomclem8 43018 isgrlim 47806 rrx2plord 48454 rrx2plordisom 48457 |
Copyright terms: Public domain | W3C validator |