| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqan12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| breqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| breqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | breqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | breq12 5112 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 class class class wbr 5107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 |
| This theorem is referenced by: breqan12rd 5124 soisores 7302 isoid 7304 isores3 7310 isoini2 7314 ofrfvalg 7661 fnwelem 8110 fnse 8112 infsupprpr 9457 wemaplem1 9499 r0weon 9965 sornom 10230 enqbreq2 10873 nqereu 10882 ordpinq 10896 lterpq 10923 ltresr2 11094 axpre-ltadd 11120 leltadd 11662 lemul1a 12036 negiso 12163 xltneg 13177 lt2sq 14098 le2sq 14099 expmordi 14132 sqrtle 15226 prdsleval 17440 efgcpbllema 19684 iducn 24170 icopnfhmeo 24841 iccpnfhmeo 24843 xrhmeo 24844 reefiso 26358 sinord 26443 logltb 26509 logccv 26572 atanord 26837 birthdaylem3 26863 lgsquadlem3 27293 sltneg 27951 onsiso 28169 mddmd 32230 xrge0iifiso 33925 revwlkb 35113 erdszelem4 35181 erdszelem8 35185 satfv0 35345 cgrextend 35996 matunitlindf 37612 idlaut 40090 monotuz 42930 monotoddzzfi 42931 wepwsolem 43031 fnwe2val 43038 aomclem8 43050 isgrlim 47981 rrx2plord 48709 rrx2plordisom 48712 |
| Copyright terms: Public domain | W3C validator |