| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqan12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| breqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| breqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | breqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | breq12 5115 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 class class class wbr 5110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 |
| This theorem is referenced by: breqan12rd 5127 soisores 7305 isoid 7307 isores3 7313 isoini2 7317 ofrfvalg 7664 fnwelem 8113 fnse 8115 infsupprpr 9464 wemaplem1 9506 r0weon 9972 sornom 10237 enqbreq2 10880 nqereu 10889 ordpinq 10903 lterpq 10930 ltresr2 11101 axpre-ltadd 11127 leltadd 11669 lemul1a 12043 negiso 12170 xltneg 13184 lt2sq 14105 le2sq 14106 expmordi 14139 sqrtle 15233 prdsleval 17447 efgcpbllema 19691 iducn 24177 icopnfhmeo 24848 iccpnfhmeo 24850 xrhmeo 24851 reefiso 26365 sinord 26450 logltb 26516 logccv 26579 atanord 26844 birthdaylem3 26870 lgsquadlem3 27300 sltneg 27958 onsiso 28176 mddmd 32237 xrge0iifiso 33932 revwlkb 35120 erdszelem4 35188 erdszelem8 35192 satfv0 35352 cgrextend 36003 matunitlindf 37619 idlaut 40097 monotuz 42937 monotoddzzfi 42938 wepwsolem 43038 fnwe2val 43045 aomclem8 43057 isgrlim 47985 rrx2plord 48713 rrx2plordisom 48716 |
| Copyright terms: Public domain | W3C validator |