Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > breqan12d | Structured version Visualization version GIF version |
Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
breqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
breqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | breqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | breq12 5086 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
4 | 1, 2, 3 | syl2an 597 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 class class class wbr 5081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 |
This theorem is referenced by: breqan12rd 5098 soisores 7230 isoid 7232 isores3 7238 isoini2 7242 ofrfvalg 7573 fnwelem 8003 fnse 8005 infsupprpr 9307 wemaplem1 9349 r0weon 9814 sornom 10079 enqbreq2 10722 nqereu 10731 ordpinq 10745 lterpq 10772 ltresr2 10943 axpre-ltadd 10969 leltadd 11505 lemul1a 11875 negiso 12001 xltneg 12997 lt2sq 13898 le2sq 13899 expmordi 13931 sqrtle 15017 prdsleval 17233 efgcpbllema 19405 iducn 23480 icopnfhmeo 24151 iccpnfhmeo 24153 xrhmeo 24154 reefiso 25652 sinord 25735 logltb 25800 logccv 25863 atanord 26122 birthdaylem3 26148 lgsquadlem3 26575 mddmd 30708 xrge0iifiso 31930 revwlkb 33132 erdszelem4 33201 erdszelem8 33205 satfv0 33365 cgrextend 34355 matunitlindf 35819 idlaut 38152 monotuz 40801 monotoddzzfi 40802 wepwsolem 40905 fnwe2val 40912 aomclem8 40924 rrx2plord 46124 rrx2plordisom 46127 |
Copyright terms: Public domain | W3C validator |