| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqan12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| breqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| breqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | breqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | breq12 5107 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 class class class wbr 5102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 |
| This theorem is referenced by: breqan12rd 5119 soisores 7284 isoid 7286 isores3 7292 isoini2 7296 ofrfvalg 7641 fnwelem 8087 fnse 8089 infsupprpr 9433 wemaplem1 9475 r0weon 9943 sornom 10208 enqbreq2 10851 nqereu 10860 ordpinq 10874 lterpq 10901 ltresr2 11072 axpre-ltadd 11098 leltadd 11640 lemul1a 12014 negiso 12141 xltneg 13155 lt2sq 14076 le2sq 14077 expmordi 14110 sqrtle 15203 prdsleval 17417 efgcpbllema 19669 iducn 24204 icopnfhmeo 24875 iccpnfhmeo 24877 xrhmeo 24878 reefiso 26392 sinord 26477 logltb 26543 logccv 26606 atanord 26871 birthdaylem3 26897 lgsquadlem3 27327 sltneg 27992 onsiso 28210 mddmd 32281 xrge0iifiso 33919 revwlkb 35107 erdszelem4 35175 erdszelem8 35179 satfv0 35339 cgrextend 35990 matunitlindf 37606 idlaut 40084 monotuz 42924 monotoddzzfi 42925 wepwsolem 43025 fnwe2val 43032 aomclem8 43044 isgrlim 47975 rrx2plord 48703 rrx2plordisom 48706 |
| Copyright terms: Public domain | W3C validator |