| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqan12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| breqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| breqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | breqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | breq12 5107 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 class class class wbr 5102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 |
| This theorem is referenced by: breqan12rd 5119 soisores 7284 isoid 7286 isores3 7292 isoini2 7296 ofrfvalg 7641 fnwelem 8087 fnse 8089 infsupprpr 9433 wemaplem1 9475 r0weon 9941 sornom 10206 enqbreq2 10849 nqereu 10858 ordpinq 10872 lterpq 10899 ltresr2 11070 axpre-ltadd 11096 leltadd 11638 lemul1a 12012 negiso 12139 xltneg 13153 lt2sq 14074 le2sq 14075 expmordi 14108 sqrtle 15202 prdsleval 17416 efgcpbllema 19668 iducn 24203 icopnfhmeo 24874 iccpnfhmeo 24876 xrhmeo 24877 reefiso 26391 sinord 26476 logltb 26542 logccv 26605 atanord 26870 birthdaylem3 26896 lgsquadlem3 27326 sltneg 27991 onsiso 28209 mddmd 32280 xrge0iifiso 33918 revwlkb 35106 erdszelem4 35174 erdszelem8 35178 satfv0 35338 cgrextend 35989 matunitlindf 37605 idlaut 40083 monotuz 42923 monotoddzzfi 42924 wepwsolem 43024 fnwe2val 43031 aomclem8 43043 isgrlim 47974 rrx2plord 48702 rrx2plordisom 48705 |
| Copyright terms: Public domain | W3C validator |