| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqan12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| breqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| breqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | breqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | breq12 5094 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 class class class wbr 5089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 |
| This theorem is referenced by: breqan12rd 5106 soisores 7261 isoid 7263 isores3 7269 isoini2 7273 ofrfvalg 7618 fnwelem 8061 fnse 8063 infsupprpr 9390 wemaplem1 9432 r0weon 9903 sornom 10168 enqbreq2 10811 nqereu 10820 ordpinq 10834 lterpq 10861 ltresr2 11032 axpre-ltadd 11058 leltadd 11601 lemul1a 11975 negiso 12102 xltneg 13116 lt2sq 14040 le2sq 14041 expmordi 14074 sqrtle 15167 prdsleval 17381 efgcpbllema 19666 iducn 24197 icopnfhmeo 24868 iccpnfhmeo 24870 xrhmeo 24871 reefiso 26385 sinord 26470 logltb 26536 logccv 26599 atanord 26864 birthdaylem3 26890 lgsquadlem3 27320 sltneg 27987 onsiso 28205 mddmd 32281 xrge0iifiso 33948 revwlkb 35170 erdszelem4 35238 erdszelem8 35242 satfv0 35402 cgrextend 36052 matunitlindf 37657 idlaut 40194 monotuz 43033 monotoddzzfi 43034 wepwsolem 43134 fnwe2val 43141 aomclem8 43153 isgrlim 48081 rrx2plord 48820 rrx2plordisom 48823 |
| Copyright terms: Public domain | W3C validator |