MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  breqan12d Structured version   Visualization version   GIF version

Theorem breqan12d 5135
Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypotheses
Ref Expression
breq1d.1 (𝜑𝐴 = 𝐵)
breqan12i.2 (𝜓𝐶 = 𝐷)
Assertion
Ref Expression
breqan12d ((𝜑𝜓) → (𝐴𝑅𝐶𝐵𝑅𝐷))

Proof of Theorem breqan12d
StepHypRef Expression
1 breq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 breqan12i.2 . 2 (𝜓𝐶 = 𝐷)
3 breq12 5124 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝑅𝐶𝐵𝑅𝐷))
41, 2, 3syl2an 596 1 ((𝜑𝜓) → (𝐴𝑅𝐶𝐵𝑅𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540   class class class wbr 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120
This theorem is referenced by:  breqan12rd  5136  soisores  7320  isoid  7322  isores3  7328  isoini2  7332  ofrfvalg  7679  fnwelem  8130  fnse  8132  infsupprpr  9518  wemaplem1  9560  r0weon  10026  sornom  10291  enqbreq2  10934  nqereu  10943  ordpinq  10957  lterpq  10984  ltresr2  11155  axpre-ltadd  11181  leltadd  11721  lemul1a  12095  negiso  12222  xltneg  13233  lt2sq  14151  le2sq  14152  expmordi  14185  sqrtle  15279  prdsleval  17491  efgcpbllema  19735  iducn  24221  icopnfhmeo  24892  iccpnfhmeo  24894  xrhmeo  24895  reefiso  26410  sinord  26495  logltb  26561  logccv  26624  atanord  26889  birthdaylem3  26915  lgsquadlem3  27345  sltneg  28003  onsiso  28221  mddmd  32282  xrge0iifiso  33966  revwlkb  35148  erdszelem4  35216  erdszelem8  35220  satfv0  35380  cgrextend  36026  matunitlindf  37642  idlaut  40115  monotuz  42965  monotoddzzfi  42966  wepwsolem  43066  fnwe2val  43073  aomclem8  43085  isgrlim  47994  rrx2plord  48700  rrx2plordisom  48703
  Copyright terms: Public domain W3C validator