MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  breqan12d Structured version   Visualization version   GIF version

Theorem breqan12d 5105
Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypotheses
Ref Expression
breq1d.1 (𝜑𝐴 = 𝐵)
breqan12i.2 (𝜓𝐶 = 𝐷)
Assertion
Ref Expression
breqan12d ((𝜑𝜓) → (𝐴𝑅𝐶𝐵𝑅𝐷))

Proof of Theorem breqan12d
StepHypRef Expression
1 breq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 breqan12i.2 . 2 (𝜓𝐶 = 𝐷)
3 breq12 5094 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝑅𝐶𝐵𝑅𝐷))
41, 2, 3syl2an 596 1 ((𝜑𝜓) → (𝐴𝑅𝐶𝐵𝑅𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541   class class class wbr 5089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090
This theorem is referenced by:  breqan12rd  5106  soisores  7261  isoid  7263  isores3  7269  isoini2  7273  ofrfvalg  7618  fnwelem  8061  fnse  8063  infsupprpr  9390  wemaplem1  9432  r0weon  9903  sornom  10168  enqbreq2  10811  nqereu  10820  ordpinq  10834  lterpq  10861  ltresr2  11032  axpre-ltadd  11058  leltadd  11601  lemul1a  11975  negiso  12102  xltneg  13116  lt2sq  14040  le2sq  14041  expmordi  14074  sqrtle  15167  prdsleval  17381  efgcpbllema  19666  iducn  24197  icopnfhmeo  24868  iccpnfhmeo  24870  xrhmeo  24871  reefiso  26385  sinord  26470  logltb  26536  logccv  26599  atanord  26864  birthdaylem3  26890  lgsquadlem3  27320  sltneg  27987  onsiso  28205  mddmd  32281  xrge0iifiso  33948  revwlkb  35170  erdszelem4  35238  erdszelem8  35242  satfv0  35402  cgrextend  36052  matunitlindf  37657  idlaut  40194  monotuz  43033  monotoddzzfi  43034  wepwsolem  43134  fnwe2val  43141  aomclem8  43153  isgrlim  48081  rrx2plord  48820  rrx2plordisom  48823
  Copyright terms: Public domain W3C validator