Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > breqan12d | Structured version Visualization version GIF version |
Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
breqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
breqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | breqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | breq12 5083 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
4 | 1, 2, 3 | syl2an 595 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 class class class wbr 5078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 |
This theorem is referenced by: breqan12rd 5095 soisores 7191 isoid 7193 isores3 7199 isoini2 7203 ofrfvalg 7532 fnwelem 7956 fnse 7958 infsupprpr 9224 wemaplem1 9266 r0weon 9752 sornom 10017 enqbreq2 10660 nqereu 10669 ordpinq 10683 lterpq 10710 ltresr2 10881 axpre-ltadd 10907 leltadd 11442 lemul1a 11812 negiso 11938 xltneg 12933 lt2sq 13833 le2sq 13834 expmordi 13866 sqrtle 14953 prdsleval 17169 efgcpbllema 19341 iducn 23416 icopnfhmeo 24087 iccpnfhmeo 24089 xrhmeo 24090 reefiso 25588 sinord 25671 logltb 25736 logccv 25799 atanord 26058 birthdaylem3 26084 lgsquadlem3 26511 mddmd 30642 xrge0iifiso 31864 revwlkb 33066 erdszelem4 33135 erdszelem8 33139 satfv0 33299 cgrextend 34289 matunitlindf 35754 idlaut 38089 monotuz 40743 monotoddzzfi 40744 wepwsolem 40847 fnwe2val 40854 aomclem8 40866 rrx2plord 46018 rrx2plordisom 46021 |
Copyright terms: Public domain | W3C validator |