![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breqan12d | Structured version Visualization version GIF version |
Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
breqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
breqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | breqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | breq12 5152 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 class class class wbr 5147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 |
This theorem is referenced by: breqan12rd 5164 soisores 7346 isoid 7348 isores3 7354 isoini2 7358 ofrfvalg 7704 fnwelem 8154 fnse 8156 infsupprpr 9541 wemaplem1 9583 r0weon 10049 sornom 10314 enqbreq2 10957 nqereu 10966 ordpinq 10980 lterpq 11007 ltresr2 11178 axpre-ltadd 11204 leltadd 11744 lemul1a 12118 negiso 12245 xltneg 13255 lt2sq 14169 le2sq 14170 expmordi 14203 sqrtle 15295 prdsleval 17523 efgcpbllema 19786 iducn 24307 icopnfhmeo 24987 iccpnfhmeo 24989 xrhmeo 24990 reefiso 26506 sinord 26590 logltb 26656 logccv 26719 atanord 26984 birthdaylem3 27010 lgsquadlem3 27440 sltneg 28091 mddmd 32329 xrge0iifiso 33895 revwlkb 35109 erdszelem4 35178 erdszelem8 35182 satfv0 35342 cgrextend 35989 matunitlindf 37604 idlaut 40078 monotuz 42929 monotoddzzfi 42930 wepwsolem 43030 fnwe2val 43037 aomclem8 43049 isgrlim 47884 rrx2plord 48569 rrx2plordisom 48572 |
Copyright terms: Public domain | W3C validator |