Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > breqan12d | Structured version Visualization version GIF version |
Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
breqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
breqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | breqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | breq12 5094 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 class class class wbr 5089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-br 5090 |
This theorem is referenced by: breqan12rd 5106 soisores 7248 isoid 7250 isores3 7256 isoini2 7260 ofrfvalg 7595 fnwelem 8031 fnse 8033 infsupprpr 9353 wemaplem1 9395 r0weon 9861 sornom 10126 enqbreq2 10769 nqereu 10778 ordpinq 10792 lterpq 10819 ltresr2 10990 axpre-ltadd 11016 leltadd 11552 lemul1a 11922 negiso 12048 xltneg 13044 lt2sq 13945 le2sq 13946 expmordi 13978 sqrtle 15063 prdsleval 17277 efgcpbllema 19447 iducn 23533 icopnfhmeo 24204 iccpnfhmeo 24206 xrhmeo 24207 reefiso 25705 sinord 25788 logltb 25853 logccv 25916 atanord 26175 birthdaylem3 26201 lgsquadlem3 26628 mddmd 30892 xrge0iifiso 32124 revwlkb 33327 erdszelem4 33396 erdszelem8 33400 satfv0 33560 cgrextend 34401 matunitlindf 35873 idlaut 38357 monotuz 41014 monotoddzzfi 41015 wepwsolem 41118 fnwe2val 41125 aomclem8 41137 rrx2plord 46406 rrx2plordisom 46409 |
Copyright terms: Public domain | W3C validator |