![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breqan12d | Structured version Visualization version GIF version |
Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
breqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
breqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | breqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | breq12 4973 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
4 | 1, 2, 3 | syl2an 595 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1525 class class class wbr 4968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-rab 3116 df-v 3442 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-sn 4479 df-pr 4481 df-op 4485 df-br 4969 |
This theorem is referenced by: breqan12rd 4985 soisores 6950 isoid 6952 isores3 6958 isoini2 6962 ofrfval 7282 fnwelem 7685 fnse 7687 infsupprpr 8821 wemaplem1 8863 r0weon 9291 sornom 9552 enqbreq2 10195 nqereu 10204 ordpinq 10218 lterpq 10245 ltresr2 10416 axpre-ltadd 10442 leltadd 10978 lemul1a 11348 negiso 11475 xltneg 12464 lt2sq 13352 le2sq 13353 expmordi 13385 sqrtle 14458 prdsleval 16583 efgcpbllema 18611 iducn 22579 icopnfhmeo 23234 iccpnfhmeo 23236 xrhmeo 23237 reefiso 24723 sinord 24803 logltb 24868 logccv 24931 atanord 25190 birthdaylem3 25217 lgsquadlem3 25644 mddmd 29765 xrge0iifiso 30791 revwlkb 31982 erdszelem4 32051 erdszelem8 32055 satfv0 32215 cgrextend 33080 matunitlindf 34442 idlaut 36784 monotuz 39044 monotoddzzfi 39045 wepwsolem 39148 fnwe2val 39155 aomclem8 39167 rrx2plord 44210 rrx2plordisom 44213 |
Copyright terms: Public domain | W3C validator |