MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rtrclreclem3 Structured version   Visualization version   GIF version

Theorem rtrclreclem3 15004
Description: The reflexive, transitive closure is indeed transitive. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 13-Jul-2024.)
Hypothesis
Ref Expression
rtrclreclem.1 (πœ‘ β†’ Rel 𝑅)
Assertion
Ref Expression
rtrclreclem3 (πœ‘ β†’ ((t*recβ€˜π‘…) ∘ (t*recβ€˜π‘…)) βŠ† (t*recβ€˜π‘…))

Proof of Theorem rtrclreclem3
Dummy variables 𝑑 𝑒 𝑔 𝑓 𝑛 π‘š β„Ž 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-co 5675 . . 3 ((t*recβ€˜π‘…) ∘ (t*recβ€˜π‘…)) = {βŸ¨π‘’, π‘”βŸ© ∣ βˆƒπ‘“(𝑒(t*recβ€˜π‘…)𝑓 ∧ 𝑓(t*recβ€˜π‘…)𝑔)}
2 elopab 5517 . . . . 5 (𝑑 ∈ {βŸ¨π‘’, π‘”βŸ© ∣ βˆƒπ‘“(𝑒(t*recβ€˜π‘…)𝑓 ∧ 𝑓(t*recβ€˜π‘…)𝑔)} ↔ βˆƒπ‘’βˆƒπ‘”(𝑑 = βŸ¨π‘’, π‘”βŸ© ∧ βˆƒπ‘“(𝑒(t*recβ€˜π‘…)𝑓 ∧ 𝑓(t*recβ€˜π‘…)𝑔)))
3 eqeq1 2728 . . . . . . . . . . 11 (𝑑 = βŸ¨π‘’, π‘”βŸ© β†’ (𝑑 = βŸ¨π‘’, π‘”βŸ© ↔ βŸ¨π‘’, π‘”βŸ© = βŸ¨π‘’, π‘”βŸ©))
43anbi1d 629 . . . . . . . . . 10 (𝑑 = βŸ¨π‘’, π‘”βŸ© β†’ ((𝑑 = βŸ¨π‘’, π‘”βŸ© ∧ (βˆƒπ‘“(𝑒(t*recβ€˜π‘…)𝑓 ∧ 𝑓(t*recβ€˜π‘…)𝑔) ∧ πœ‘)) ↔ (βŸ¨π‘’, π‘”βŸ© = βŸ¨π‘’, π‘”βŸ© ∧ (βˆƒπ‘“(𝑒(t*recβ€˜π‘…)𝑓 ∧ 𝑓(t*recβ€˜π‘…)𝑔) ∧ πœ‘))))
5 simprr 770 . . . . . . . . . . . 12 ((βŸ¨π‘’, π‘”βŸ© = βŸ¨π‘’, π‘”βŸ© ∧ (βˆƒπ‘“(𝑒(t*recβ€˜π‘…)𝑓 ∧ 𝑓(t*recβ€˜π‘…)𝑔) ∧ πœ‘)) β†’ πœ‘)
6 simprl 768 . . . . . . . . . . . 12 ((βŸ¨π‘’, π‘”βŸ© = βŸ¨π‘’, π‘”βŸ© ∧ (βˆƒπ‘“(𝑒(t*recβ€˜π‘…)𝑓 ∧ 𝑓(t*recβ€˜π‘…)𝑔) ∧ πœ‘)) β†’ βˆƒπ‘“(𝑒(t*recβ€˜π‘…)𝑓 ∧ 𝑓(t*recβ€˜π‘…)𝑔))
7 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ πœ‘)) β†’ 𝑒(t*recβ€˜π‘…)𝑓)
8 simprr 770 . . . . . . . . . . . . . . . . . 18 ((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ πœ‘)) β†’ πœ‘)
9 rtrclreclem.1 . . . . . . . . . . . . . . . . . . 19 (πœ‘ β†’ Rel 𝑅)
109dfrtrclrec2 15002 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ (𝑒(t*recβ€˜π‘…)𝑓 ↔ βˆƒπ‘› ∈ β„•0 𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓))
118, 10syl 17 . . . . . . . . . . . . . . . . 17 ((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ πœ‘)) β†’ (𝑒(t*recβ€˜π‘…)𝑓 ↔ βˆƒπ‘› ∈ β„•0 𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓))
127, 11mpbid 231 . . . . . . . . . . . . . . . 16 ((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ πœ‘)) β†’ βˆƒπ‘› ∈ β„•0 𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓)
13 simprl 768 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ 𝑛 ∈ β„•0)))) β†’ 𝑓(t*recβ€˜π‘…)𝑔)
14 simprrl 778 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ 𝑛 ∈ β„•0)))) β†’ πœ‘)
159dfrtrclrec2 15002 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (πœ‘ β†’ (𝑓(t*recβ€˜π‘…)𝑔 ↔ βˆƒπ‘š ∈ β„•0 𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔))
1614, 15syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ 𝑛 ∈ β„•0)))) β†’ (𝑓(t*recβ€˜π‘…)𝑔 ↔ βˆƒπ‘š ∈ β„•0 𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔))
1713, 16mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ 𝑛 ∈ β„•0)))) β†’ βˆƒπ‘š ∈ β„•0 𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔)
18 simprrl 778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0)))) β†’ 𝑛 ∈ β„•0)
1918adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))))) β†’ 𝑛 ∈ β„•0)
2019adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0)))))) β†’ 𝑛 ∈ β„•0)
21 simprr 770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0)) β†’ π‘š ∈ β„•0)
2221adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))) β†’ π‘š ∈ β„•0)
2322adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0)))) β†’ π‘š ∈ β„•0)
2423adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))))) β†’ π‘š ∈ β„•0)
2524adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0)))))) β†’ π‘š ∈ β„•0)
2620, 25nn0addcld 12533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0)))))) β†’ (𝑛 + π‘š) ∈ β„•0)
2720adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑛 + π‘š) ∈ β„•0 ∧ (𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))))))) β†’ 𝑛 ∈ β„•0)
2827nn0cnd 12531 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑛 + π‘š) ∈ β„•0 ∧ (𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))))))) β†’ 𝑛 ∈ β„‚)
2925adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑛 + π‘š) ∈ β„•0 ∧ (𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))))))) β†’ π‘š ∈ β„•0)
3029nn0cnd 12531 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑛 + π‘š) ∈ β„•0 ∧ (𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))))))) β†’ π‘š ∈ β„‚)
3128, 30addcomd 11413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑛 + π‘š) ∈ β„•0 ∧ (𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))))))) β†’ (𝑛 + π‘š) = (π‘š + 𝑛))
32 eleq1 2813 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑛 + π‘š) = (π‘š + 𝑛) β†’ ((𝑛 + π‘š) ∈ β„•0 ↔ (π‘š + 𝑛) ∈ β„•0))
3332anbi1d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑛 + π‘š) = (π‘š + 𝑛) β†’ (((𝑛 + π‘š) ∈ β„•0 ∧ (𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))))))) ↔ ((π‘š + 𝑛) ∈ β„•0 ∧ (𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0)))))))))
34 simprrl 778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0)))))) β†’ πœ‘)
3534adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (((π‘š + 𝑛) ∈ β„•0 ∧ (𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))))))) β†’ πœ‘)
3635, 9syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((π‘š + 𝑛) ∈ β„•0 ∧ (𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))))))) β†’ Rel 𝑅)
3725adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((π‘š + 𝑛) ∈ β„•0 ∧ (𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))))))) β†’ π‘š ∈ β„•0)
3820adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((π‘š + 𝑛) ∈ β„•0 ∧ (𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))))))) β†’ 𝑛 ∈ β„•0)
3936, 37, 38relexpaddd 14998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((π‘š + 𝑛) ∈ β„•0 ∧ (𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))))))) β†’ ((π‘…β†‘π‘Ÿπ‘š) ∘ (π‘…β†‘π‘Ÿπ‘›)) = (π‘…β†‘π‘Ÿ(π‘š + 𝑛)))
40 oveq2 7409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑛 + π‘š) = (π‘š + 𝑛) β†’ (π‘…β†‘π‘Ÿ(𝑛 + π‘š)) = (π‘…β†‘π‘Ÿ(π‘š + 𝑛)))
4140eqeq2d 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑛 + π‘š) = (π‘š + 𝑛) β†’ (((π‘…β†‘π‘Ÿπ‘š) ∘ (π‘…β†‘π‘Ÿπ‘›)) = (π‘…β†‘π‘Ÿ(𝑛 + π‘š)) ↔ ((π‘…β†‘π‘Ÿπ‘š) ∘ (π‘…β†‘π‘Ÿπ‘›)) = (π‘…β†‘π‘Ÿ(π‘š + 𝑛))))
4239, 41imbitrrid 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑛 + π‘š) = (π‘š + 𝑛) β†’ (((π‘š + 𝑛) ∈ β„•0 ∧ (𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))))))) β†’ ((π‘…β†‘π‘Ÿπ‘š) ∘ (π‘…β†‘π‘Ÿπ‘›)) = (π‘…β†‘π‘Ÿ(𝑛 + π‘š))))
4333, 42sylbid 239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑛 + π‘š) = (π‘š + 𝑛) β†’ (((𝑛 + π‘š) ∈ β„•0 ∧ (𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))))))) β†’ ((π‘…β†‘π‘Ÿπ‘š) ∘ (π‘…β†‘π‘Ÿπ‘›)) = (π‘…β†‘π‘Ÿ(𝑛 + π‘š))))
4431, 43mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑛 + π‘š) ∈ β„•0 ∧ (𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))))))) β†’ ((π‘…β†‘π‘Ÿπ‘š) ∘ (π‘…β†‘π‘Ÿπ‘›)) = (π‘…β†‘π‘Ÿ(𝑛 + π‘š)))
45 simprrl 778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))))) β†’ 𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓)
4645adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0)))))) β†’ 𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓)
47 simprrl 778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))) β†’ 𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔)
4847adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0)))) β†’ 𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔)
4948adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))))) β†’ 𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔)
5049adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0)))))) β†’ 𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔)
5150adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑛 + π‘š) ∈ β„•0 ∧ (𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))))))) β†’ 𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔)
52 vex 3470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 𝑓 ∈ V
53 breq2 5142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (β„Ž = 𝑓 β†’ (𝑒(π‘…β†‘π‘Ÿπ‘›)β„Ž ↔ 𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓))
54 breq1 5141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (β„Ž = 𝑓 β†’ (β„Ž(π‘…β†‘π‘Ÿπ‘š)𝑔 ↔ 𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔))
5553, 54anbi12d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (β„Ž = 𝑓 β†’ ((𝑒(π‘…β†‘π‘Ÿπ‘›)β„Ž ∧ β„Ž(π‘…β†‘π‘Ÿπ‘š)𝑔) ↔ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ 𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔)))
5652, 55spcev 3588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ 𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔) β†’ βˆƒβ„Ž(𝑒(π‘…β†‘π‘Ÿπ‘›)β„Ž ∧ β„Ž(π‘…β†‘π‘Ÿπ‘š)𝑔))
5746, 51, 56syl2an2 683 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑛 + π‘š) ∈ β„•0 ∧ (𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))))))) β†’ βˆƒβ„Ž(𝑒(π‘…β†‘π‘Ÿπ‘›)β„Ž ∧ β„Ž(π‘…β†‘π‘Ÿπ‘š)𝑔))
58 vex 3470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 𝑒 ∈ V
59 vex 3470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 𝑔 ∈ V
6058, 59brco 5860 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑒((π‘…β†‘π‘Ÿπ‘š) ∘ (π‘…β†‘π‘Ÿπ‘›))𝑔 ↔ βˆƒβ„Ž(𝑒(π‘…β†‘π‘Ÿπ‘›)β„Ž ∧ β„Ž(π‘…β†‘π‘Ÿπ‘š)𝑔))
6157, 60sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑛 + π‘š) ∈ β„•0 ∧ (𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))))))) β†’ 𝑒((π‘…β†‘π‘Ÿπ‘š) ∘ (π‘…β†‘π‘Ÿπ‘›))𝑔)
6244, 61breqdi 5153 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑛 + π‘š) ∈ β„•0 ∧ (𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))))))) β†’ 𝑒(π‘…β†‘π‘Ÿ(𝑛 + π‘š))𝑔)
63 oveq2 7409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑖 = (𝑛 + π‘š) β†’ (π‘…β†‘π‘Ÿπ‘–) = (π‘…β†‘π‘Ÿ(𝑛 + π‘š)))
6463breqd 5149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑖 = (𝑛 + π‘š) β†’ (𝑒(π‘…β†‘π‘Ÿπ‘–)𝑔 ↔ 𝑒(π‘…β†‘π‘Ÿ(𝑛 + π‘š))𝑔))
6564rspcev 3604 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑛 + π‘š) ∈ β„•0 ∧ 𝑒(π‘…β†‘π‘Ÿ(𝑛 + π‘š))𝑔) β†’ βˆƒπ‘– ∈ β„•0 𝑒(π‘…β†‘π‘Ÿπ‘–)𝑔)
6662, 65syldan 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑛 + π‘š) ∈ β„•0 ∧ (𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))))))) β†’ βˆƒπ‘– ∈ β„•0 𝑒(π‘…β†‘π‘Ÿπ‘–)𝑔)
6726, 66mpancom 685 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0)))))) β†’ βˆƒπ‘– ∈ β„•0 𝑒(π‘…β†‘π‘Ÿπ‘–)𝑔)
68 df-br 5139 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑒(t*recβ€˜π‘…)𝑔 ↔ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…))
6934, 9syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0)))))) β†’ Rel 𝑅)
7069dfrtrclrec2 15002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0)))))) β†’ (𝑒(t*recβ€˜π‘…)𝑔 ↔ βˆƒπ‘– ∈ β„•0 𝑒(π‘…β†‘π‘Ÿπ‘–)𝑔))
7168, 70bitr3id 285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0)))))) β†’ (βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…) ↔ βˆƒπ‘– ∈ β„•0 𝑒(π‘…β†‘π‘Ÿπ‘–)𝑔))
7267, 71mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0)))))) β†’ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…))
7372expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))))) β†’ (𝑒(t*recβ€˜π‘…)𝑓 β†’ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…)))
7473expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0)))) β†’ (𝑓(t*recβ€˜π‘…)𝑔 β†’ (𝑒(t*recβ€˜π‘…)𝑓 β†’ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…))))
7574expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ (𝑛 ∈ β„•0 ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))) β†’ (πœ‘ β†’ (𝑓(t*recβ€˜π‘…)𝑔 β†’ (𝑒(t*recβ€˜π‘…)𝑓 β†’ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…)))))
7675anassrs 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ 𝑛 ∈ β„•0) ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0)) β†’ (πœ‘ β†’ (𝑓(t*recβ€˜π‘…)𝑔 β†’ (𝑒(t*recβ€˜π‘…)𝑓 β†’ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…)))))
7776impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((πœ‘ ∧ ((𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ 𝑛 ∈ β„•0) ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))) β†’ (𝑓(t*recβ€˜π‘…)𝑔 β†’ (𝑒(t*recβ€˜π‘…)𝑓 β†’ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…))))
7877anassrs 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ 𝑛 ∈ β„•0)) ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0)) β†’ (𝑓(t*recβ€˜π‘…)𝑔 β†’ (𝑒(t*recβ€˜π‘…)𝑓 β†’ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…))))
7978impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑓(t*recβ€˜π‘…)𝑔 ∧ ((πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ 𝑛 ∈ β„•0)) ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))) β†’ (𝑒(t*recβ€˜π‘…)𝑓 β†’ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…)))
8079anassrs 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ 𝑛 ∈ β„•0))) ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0)) β†’ (𝑒(t*recβ€˜π‘…)𝑓 β†’ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…)))
8180impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑒(t*recβ€˜π‘…)𝑓 ∧ ((𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ 𝑛 ∈ β„•0))) ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0))) β†’ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…))
8281anassrs 467 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ 𝑛 ∈ β„•0)))) ∧ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0)) β†’ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…))
8382expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 ∧ π‘š ∈ β„•0) β†’ ((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ 𝑛 ∈ β„•0)))) β†’ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…)))
8483expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . 25 (π‘š ∈ β„•0 β†’ (𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 β†’ ((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ 𝑛 ∈ β„•0)))) β†’ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…))))
8584rexlimiv 3140 . . . . . . . . . . . . . . . . . . . . . . . 24 (βˆƒπ‘š ∈ β„•0 𝑓(π‘…β†‘π‘Ÿπ‘š)𝑔 β†’ ((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ 𝑛 ∈ β„•0)))) β†’ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…)))
8617, 85mpcom 38 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ 𝑛 ∈ β„•0)))) β†’ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…))
8786expcom 413 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓(t*recβ€˜π‘…)𝑔 ∧ (πœ‘ ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ 𝑛 ∈ β„•0))) β†’ (𝑒(t*recβ€˜π‘…)𝑓 β†’ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…)))
8887anassrs 467 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓(t*recβ€˜π‘…)𝑔 ∧ πœ‘) ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ 𝑛 ∈ β„•0)) β†’ (𝑒(t*recβ€˜π‘…)𝑓 β†’ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…)))
8988impcom 407 . . . . . . . . . . . . . . . . . . . 20 ((𝑒(t*recβ€˜π‘…)𝑓 ∧ ((𝑓(t*recβ€˜π‘…)𝑔 ∧ πœ‘) ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ 𝑛 ∈ β„•0))) β†’ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…))
9089anassrs 467 . . . . . . . . . . . . . . . . . . 19 (((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ πœ‘)) ∧ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ 𝑛 ∈ β„•0)) β†’ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…))
9190expcom 413 . . . . . . . . . . . . . . . . . 18 ((𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 ∧ 𝑛 ∈ β„•0) β†’ ((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ πœ‘)) β†’ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…)))
9291expcom 413 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ β„•0 β†’ (𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 β†’ ((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ πœ‘)) β†’ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…))))
9392rexlimiv 3140 . . . . . . . . . . . . . . . 16 (βˆƒπ‘› ∈ β„•0 𝑒(π‘…β†‘π‘Ÿπ‘›)𝑓 β†’ ((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ πœ‘)) β†’ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…)))
9412, 93mpcom 38 . . . . . . . . . . . . . . 15 ((𝑒(t*recβ€˜π‘…)𝑓 ∧ (𝑓(t*recβ€˜π‘…)𝑔 ∧ πœ‘)) β†’ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…))
9594anassrs 467 . . . . . . . . . . . . . 14 (((𝑒(t*recβ€˜π‘…)𝑓 ∧ 𝑓(t*recβ€˜π‘…)𝑔) ∧ πœ‘) β†’ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…))
9695expcom 413 . . . . . . . . . . . . 13 (πœ‘ β†’ ((𝑒(t*recβ€˜π‘…)𝑓 ∧ 𝑓(t*recβ€˜π‘…)𝑔) β†’ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…)))
9796exlimdv 1928 . . . . . . . . . . . 12 (πœ‘ β†’ (βˆƒπ‘“(𝑒(t*recβ€˜π‘…)𝑓 ∧ 𝑓(t*recβ€˜π‘…)𝑔) β†’ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…)))
985, 6, 97sylc 65 . . . . . . . . . . 11 ((βŸ¨π‘’, π‘”βŸ© = βŸ¨π‘’, π‘”βŸ© ∧ (βˆƒπ‘“(𝑒(t*recβ€˜π‘…)𝑓 ∧ 𝑓(t*recβ€˜π‘…)𝑔) ∧ πœ‘)) β†’ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…))
99 eleq1 2813 . . . . . . . . . . 11 (𝑑 = βŸ¨π‘’, π‘”βŸ© β†’ (𝑑 ∈ (t*recβ€˜π‘…) ↔ βŸ¨π‘’, π‘”βŸ© ∈ (t*recβ€˜π‘…)))
10098, 99imbitrrid 245 . . . . . . . . . 10 (𝑑 = βŸ¨π‘’, π‘”βŸ© β†’ ((βŸ¨π‘’, π‘”βŸ© = βŸ¨π‘’, π‘”βŸ© ∧ (βˆƒπ‘“(𝑒(t*recβ€˜π‘…)𝑓 ∧ 𝑓(t*recβ€˜π‘…)𝑔) ∧ πœ‘)) β†’ 𝑑 ∈ (t*recβ€˜π‘…)))
1014, 100sylbid 239 . . . . . . . . 9 (𝑑 = βŸ¨π‘’, π‘”βŸ© β†’ ((𝑑 = βŸ¨π‘’, π‘”βŸ© ∧ (βˆƒπ‘“(𝑒(t*recβ€˜π‘…)𝑓 ∧ 𝑓(t*recβ€˜π‘…)𝑔) ∧ πœ‘)) β†’ 𝑑 ∈ (t*recβ€˜π‘…)))
102101anabsi5 666 . . . . . . . 8 ((𝑑 = βŸ¨π‘’, π‘”βŸ© ∧ (βˆƒπ‘“(𝑒(t*recβ€˜π‘…)𝑓 ∧ 𝑓(t*recβ€˜π‘…)𝑔) ∧ πœ‘)) β†’ 𝑑 ∈ (t*recβ€˜π‘…))
103102anassrs 467 . . . . . . 7 (((𝑑 = βŸ¨π‘’, π‘”βŸ© ∧ βˆƒπ‘“(𝑒(t*recβ€˜π‘…)𝑓 ∧ 𝑓(t*recβ€˜π‘…)𝑔)) ∧ πœ‘) β†’ 𝑑 ∈ (t*recβ€˜π‘…))
104103expcom 413 . . . . . 6 (πœ‘ β†’ ((𝑑 = βŸ¨π‘’, π‘”βŸ© ∧ βˆƒπ‘“(𝑒(t*recβ€˜π‘…)𝑓 ∧ 𝑓(t*recβ€˜π‘…)𝑔)) β†’ 𝑑 ∈ (t*recβ€˜π‘…)))
105104exlimdvv 1929 . . . . 5 (πœ‘ β†’ (βˆƒπ‘’βˆƒπ‘”(𝑑 = βŸ¨π‘’, π‘”βŸ© ∧ βˆƒπ‘“(𝑒(t*recβ€˜π‘…)𝑓 ∧ 𝑓(t*recβ€˜π‘…)𝑔)) β†’ 𝑑 ∈ (t*recβ€˜π‘…)))
1062, 105biimtrid 241 . . . 4 (πœ‘ β†’ (𝑑 ∈ {βŸ¨π‘’, π‘”βŸ© ∣ βˆƒπ‘“(𝑒(t*recβ€˜π‘…)𝑓 ∧ 𝑓(t*recβ€˜π‘…)𝑔)} β†’ 𝑑 ∈ (t*recβ€˜π‘…)))
107 eleq2 2814 . . . . 5 (((t*recβ€˜π‘…) ∘ (t*recβ€˜π‘…)) = {βŸ¨π‘’, π‘”βŸ© ∣ βˆƒπ‘“(𝑒(t*recβ€˜π‘…)𝑓 ∧ 𝑓(t*recβ€˜π‘…)𝑔)} β†’ (𝑑 ∈ ((t*recβ€˜π‘…) ∘ (t*recβ€˜π‘…)) ↔ 𝑑 ∈ {βŸ¨π‘’, π‘”βŸ© ∣ βˆƒπ‘“(𝑒(t*recβ€˜π‘…)𝑓 ∧ 𝑓(t*recβ€˜π‘…)𝑔)}))
108107imbi1d 341 . . . 4 (((t*recβ€˜π‘…) ∘ (t*recβ€˜π‘…)) = {βŸ¨π‘’, π‘”βŸ© ∣ βˆƒπ‘“(𝑒(t*recβ€˜π‘…)𝑓 ∧ 𝑓(t*recβ€˜π‘…)𝑔)} β†’ ((𝑑 ∈ ((t*recβ€˜π‘…) ∘ (t*recβ€˜π‘…)) β†’ 𝑑 ∈ (t*recβ€˜π‘…)) ↔ (𝑑 ∈ {βŸ¨π‘’, π‘”βŸ© ∣ βˆƒπ‘“(𝑒(t*recβ€˜π‘…)𝑓 ∧ 𝑓(t*recβ€˜π‘…)𝑔)} β†’ 𝑑 ∈ (t*recβ€˜π‘…))))
109106, 108imbitrrid 245 . . 3 (((t*recβ€˜π‘…) ∘ (t*recβ€˜π‘…)) = {βŸ¨π‘’, π‘”βŸ© ∣ βˆƒπ‘“(𝑒(t*recβ€˜π‘…)𝑓 ∧ 𝑓(t*recβ€˜π‘…)𝑔)} β†’ (πœ‘ β†’ (𝑑 ∈ ((t*recβ€˜π‘…) ∘ (t*recβ€˜π‘…)) β†’ 𝑑 ∈ (t*recβ€˜π‘…))))
1101, 109ax-mp 5 . 2 (πœ‘ β†’ (𝑑 ∈ ((t*recβ€˜π‘…) ∘ (t*recβ€˜π‘…)) β†’ 𝑑 ∈ (t*recβ€˜π‘…)))
111110ssrdv 3980 1 (πœ‘ β†’ ((t*recβ€˜π‘…) ∘ (t*recβ€˜π‘…)) βŠ† (t*recβ€˜π‘…))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098  βˆƒwrex 3062   βŠ† wss 3940  βŸ¨cop 4626   class class class wbr 5138  {copab 5200   ∘ ccom 5670  Rel wrel 5671  β€˜cfv 6533  (class class class)co 7401   + caddc 11109  β„•0cn0 12469  β†‘π‘Ÿcrelexp 14963  t*reccrtrcl 14999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-n0 12470  df-z 12556  df-uz 12820  df-seq 13964  df-relexp 14964  df-rtrclrec 15000
This theorem is referenced by:  dfrtrcl2  15006
  Copyright terms: Public domain W3C validator