MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rtrclreclem3 Structured version   Visualization version   GIF version

Theorem rtrclreclem3 14101
Description: The reflexive, transitive closure is indeed transitive. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.)
Hypotheses
Ref Expression
rtrclreclem.rel (𝜑 → Rel 𝑅)
rtrclreclem.rex (𝜑𝑅 ∈ V)
Assertion
Ref Expression
rtrclreclem3 (𝜑 → ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))

Proof of Theorem rtrclreclem3
Dummy variables 𝑑 𝑒 𝑔 𝑓 𝑛 𝑚 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-co 5288 . . 3 ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) = {⟨𝑒, 𝑔⟩ ∣ ∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔)}
2 elopab 5146 . . . . 5 (𝑑 ∈ {⟨𝑒, 𝑔⟩ ∣ ∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔)} ↔ ∃𝑒𝑔(𝑑 = ⟨𝑒, 𝑔⟩ ∧ ∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔)))
3 eqeq1 2769 . . . . . . . . . . 11 (𝑑 = ⟨𝑒, 𝑔⟩ → (𝑑 = ⟨𝑒, 𝑔⟩ ↔ ⟨𝑒, 𝑔⟩ = ⟨𝑒, 𝑔⟩))
43anbi1d 623 . . . . . . . . . 10 (𝑑 = ⟨𝑒, 𝑔⟩ → ((𝑑 = ⟨𝑒, 𝑔⟩ ∧ (∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔) ∧ 𝜑)) ↔ (⟨𝑒, 𝑔⟩ = ⟨𝑒, 𝑔⟩ ∧ (∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔) ∧ 𝜑))))
5 simprr 789 . . . . . . . . . . . 12 ((⟨𝑒, 𝑔⟩ = ⟨𝑒, 𝑔⟩ ∧ (∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔) ∧ 𝜑)) → 𝜑)
6 simprl 787 . . . . . . . . . . . 12 ((⟨𝑒, 𝑔⟩ = ⟨𝑒, 𝑔⟩ ∧ (∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔) ∧ 𝜑)) → ∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔))
7 simpl 474 . . . . . . . . . . . . . . . . 17 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔𝜑)) → 𝑒(t*rec‘𝑅)𝑓)
8 simprr 789 . . . . . . . . . . . . . . . . . 18 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔𝜑)) → 𝜑)
9 rtrclreclem.rel . . . . . . . . . . . . . . . . . . 19 (𝜑 → Rel 𝑅)
10 rtrclreclem.rex . . . . . . . . . . . . . . . . . . 19 (𝜑𝑅 ∈ V)
119, 10dfrtrclrec2 14098 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑒(t*rec‘𝑅)𝑓 ↔ ∃𝑛 ∈ ℕ0 𝑒(𝑅𝑟𝑛)𝑓))
128, 11syl 17 . . . . . . . . . . . . . . . . 17 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔𝜑)) → (𝑒(t*rec‘𝑅)𝑓 ↔ ∃𝑛 ∈ ℕ0 𝑒(𝑅𝑟𝑛)𝑓))
137, 12mpbid 223 . . . . . . . . . . . . . . . 16 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔𝜑)) → ∃𝑛 ∈ ℕ0 𝑒(𝑅𝑟𝑛)𝑓)
14 simprl 787 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0)))) → 𝑓(t*rec‘𝑅)𝑔)
15 simprrl 799 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0)))) → 𝜑)
169, 10dfrtrclrec2 14098 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑓(t*rec‘𝑅)𝑔 ↔ ∃𝑚 ∈ ℕ0 𝑓(𝑅𝑟𝑚)𝑔))
1715, 16syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0)))) → (𝑓(t*rec‘𝑅)𝑔 ↔ ∃𝑚 ∈ ℕ0 𝑓(𝑅𝑟𝑚)𝑔))
1814, 17mpbid 223 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0)))) → ∃𝑚 ∈ ℕ0 𝑓(𝑅𝑟𝑚)𝑔)
19 simprrl 799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))) → 𝑛 ∈ ℕ0)
2019adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))) → 𝑛 ∈ ℕ0)
2120adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))))) → 𝑛 ∈ ℕ0)
22 simprr 789 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)) → 𝑚 ∈ ℕ0)
2322adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))) → 𝑚 ∈ ℕ0)
2423adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))) → 𝑚 ∈ ℕ0)
2524adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))) → 𝑚 ∈ ℕ0)
2625adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))))) → 𝑚 ∈ ℕ0)
2721, 26nn0addcld 11607 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))))) → (𝑛 + 𝑚) ∈ ℕ0)
2821adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → 𝑛 ∈ ℕ0)
2928nn0cnd 11605 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → 𝑛 ∈ ℂ)
3026adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → 𝑚 ∈ ℕ0)
3130nn0cnd 11605 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → 𝑚 ∈ ℂ)
3229, 31addcomd 10497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → (𝑛 + 𝑚) = (𝑚 + 𝑛))
33 eleq1 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑛 + 𝑚) = (𝑚 + 𝑛) → ((𝑛 + 𝑚) ∈ ℕ0 ↔ (𝑚 + 𝑛) ∈ ℕ0))
3433anbi1d 623 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑛 + 𝑚) = (𝑚 + 𝑛) → (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) ↔ ((𝑚 + 𝑛) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))))))))
3526adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (((𝑚 + 𝑛) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → 𝑚 ∈ ℕ0)
3621adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (((𝑚 + 𝑛) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → 𝑛 ∈ ℕ0)
37 simprrl 799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))))) → 𝜑)
3837adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (((𝑚 + 𝑛) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → 𝜑)
3938, 9syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (((𝑚 + 𝑛) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → Rel 𝑅)
4038, 10syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (((𝑚 + 𝑛) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → 𝑅 ∈ V)
4139, 40relexpaddd 14095 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (((𝑚 + 𝑛) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑅𝑟𝑚) ∘ (𝑅𝑟𝑛)) = (𝑅𝑟(𝑚 + 𝑛))))
4235, 36, 41mp2and 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((𝑚 + 𝑛) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → ((𝑅𝑟𝑚) ∘ (𝑅𝑟𝑛)) = (𝑅𝑟(𝑚 + 𝑛)))
43 oveq2 6854 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑛 + 𝑚) = (𝑚 + 𝑛) → (𝑅𝑟(𝑛 + 𝑚)) = (𝑅𝑟(𝑚 + 𝑛)))
4443eqeq2d 2775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑛 + 𝑚) = (𝑚 + 𝑛) → (((𝑅𝑟𝑚) ∘ (𝑅𝑟𝑛)) = (𝑅𝑟(𝑛 + 𝑚)) ↔ ((𝑅𝑟𝑚) ∘ (𝑅𝑟𝑛)) = (𝑅𝑟(𝑚 + 𝑛))))
4542, 44syl5ibr 237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑛 + 𝑚) = (𝑚 + 𝑛) → (((𝑚 + 𝑛) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → ((𝑅𝑟𝑚) ∘ (𝑅𝑟𝑛)) = (𝑅𝑟(𝑛 + 𝑚))))
4634, 45sylbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑛 + 𝑚) = (𝑚 + 𝑛) → (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → ((𝑅𝑟𝑚) ∘ (𝑅𝑟𝑛)) = (𝑅𝑟(𝑛 + 𝑚))))
4732, 46mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → ((𝑅𝑟𝑚) ∘ (𝑅𝑟𝑛)) = (𝑅𝑟(𝑛 + 𝑚)))
4847eqcomd 2771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → (𝑅𝑟(𝑛 + 𝑚)) = ((𝑅𝑟𝑚) ∘ (𝑅𝑟𝑛)))
49 simprrl 799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))) → 𝑒(𝑅𝑟𝑛)𝑓)
5049adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))))) → 𝑒(𝑅𝑟𝑛)𝑓)
5150adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → 𝑒(𝑅𝑟𝑛)𝑓)
52 simprrl 799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))) → 𝑓(𝑅𝑟𝑚)𝑔)
5352adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))) → 𝑓(𝑅𝑟𝑚)𝑔)
5453adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))) → 𝑓(𝑅𝑟𝑚)𝑔)
5554adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))))) → 𝑓(𝑅𝑟𝑚)𝑔)
5655adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → 𝑓(𝑅𝑟𝑚)𝑔)
57 vex 3353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 𝑓 ∈ V
58 breq2 4815 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ( = 𝑓 → (𝑒(𝑅𝑟𝑛)𝑒(𝑅𝑟𝑛)𝑓))
59 breq1 4814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ( = 𝑓 → ((𝑅𝑟𝑚)𝑔𝑓(𝑅𝑟𝑚)𝑔))
6058, 59anbi12d 624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ( = 𝑓 → ((𝑒(𝑅𝑟𝑛)(𝑅𝑟𝑚)𝑔) ↔ (𝑒(𝑅𝑟𝑛)𝑓𝑓(𝑅𝑟𝑚)𝑔)))
6157, 60spcev 3453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑒(𝑅𝑟𝑛)𝑓𝑓(𝑅𝑟𝑚)𝑔) → ∃(𝑒(𝑅𝑟𝑛)(𝑅𝑟𝑚)𝑔))
6251, 56, 61syl2anc 579 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → ∃(𝑒(𝑅𝑟𝑛)(𝑅𝑟𝑚)𝑔))
63 vex 3353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 𝑒 ∈ V
64 vex 3353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 𝑔 ∈ V
6563, 64brco 5463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑒((𝑅𝑟𝑚) ∘ (𝑅𝑟𝑛))𝑔 ↔ ∃(𝑒(𝑅𝑟𝑛)(𝑅𝑟𝑚)𝑔))
6662, 65sylibr 225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → 𝑒((𝑅𝑟𝑚) ∘ (𝑅𝑟𝑛))𝑔)
67 breq 4813 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑅𝑟(𝑛 + 𝑚)) = ((𝑅𝑟𝑚) ∘ (𝑅𝑟𝑛)) → (𝑒(𝑅𝑟(𝑛 + 𝑚))𝑔𝑒((𝑅𝑟𝑚) ∘ (𝑅𝑟𝑛))𝑔))
6866, 67syl5ibr 237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑅𝑟(𝑛 + 𝑚)) = ((𝑅𝑟𝑚) ∘ (𝑅𝑟𝑛)) → (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → 𝑒(𝑅𝑟(𝑛 + 𝑚))𝑔))
6948, 68mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → 𝑒(𝑅𝑟(𝑛 + 𝑚))𝑔)
70 oveq2 6854 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑖 = (𝑛 + 𝑚) → (𝑅𝑟𝑖) = (𝑅𝑟(𝑛 + 𝑚)))
7170breqd 4822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑖 = (𝑛 + 𝑚) → (𝑒(𝑅𝑟𝑖)𝑔𝑒(𝑅𝑟(𝑛 + 𝑚))𝑔))
7271rspcev 3462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑛 + 𝑚) ∈ ℕ0𝑒(𝑅𝑟(𝑛 + 𝑚))𝑔) → ∃𝑖 ∈ ℕ0 𝑒(𝑅𝑟𝑖)𝑔)
7369, 72syldan 585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → ∃𝑖 ∈ ℕ0 𝑒(𝑅𝑟𝑖)𝑔)
7427, 73mpancom 679 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))))) → ∃𝑖 ∈ ℕ0 𝑒(𝑅𝑟𝑖)𝑔)
75 df-br 4812 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑒(t*rec‘𝑅)𝑔 ↔ ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))
7637, 9syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))))) → Rel 𝑅)
7737, 10syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))))) → 𝑅 ∈ V)
7876, 77dfrtrclrec2 14098 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))))) → (𝑒(t*rec‘𝑅)𝑔 ↔ ∃𝑖 ∈ ℕ0 𝑒(𝑅𝑟𝑖)𝑔))
7975, 78syl5bbr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))))) → (⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅) ↔ ∃𝑖 ∈ ℕ0 𝑒(𝑅𝑟𝑖)𝑔))
8074, 79mpbird 248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))))) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))
8180expcom 402 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))) → (𝑒(t*rec‘𝑅)𝑓 → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))
8281expcom 402 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))) → (𝑓(t*rec‘𝑅)𝑔 → (𝑒(t*rec‘𝑅)𝑓 → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))))
8382expcom 402 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))) → (𝜑 → (𝑓(t*rec‘𝑅)𝑔 → (𝑒(t*rec‘𝑅)𝑓 → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))))
8483anassrs 459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0) ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)) → (𝜑 → (𝑓(t*rec‘𝑅)𝑔 → (𝑒(t*rec‘𝑅)𝑓 → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))))
8584impcom 396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ ((𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0) ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))) → (𝑓(t*rec‘𝑅)𝑔 → (𝑒(t*rec‘𝑅)𝑓 → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))))
8685anassrs 459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0)) ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)) → (𝑓(t*rec‘𝑅)𝑔 → (𝑒(t*rec‘𝑅)𝑓 → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))))
8786impcom 396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑓(t*rec‘𝑅)𝑔 ∧ ((𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0)) ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))) → (𝑒(t*rec‘𝑅)𝑓 → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))
8887anassrs 459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0))) ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)) → (𝑒(t*rec‘𝑅)𝑓 → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))
8988impcom 396 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑒(t*rec‘𝑅)𝑓 ∧ ((𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0))) ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))
9089anassrs 459 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0)))) ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))
9190expcom 402 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0) → ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0)))) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))
9291expcom 402 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 ∈ ℕ0 → (𝑓(𝑅𝑟𝑚)𝑔 → ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0)))) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))))
9392rexlimiv 3174 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑚 ∈ ℕ0 𝑓(𝑅𝑟𝑚)𝑔 → ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0)))) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))
9418, 93mpcom 38 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0)))) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))
9594expcom 402 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0))) → (𝑒(t*rec‘𝑅)𝑓 → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))
9695anassrs 459 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓(t*rec‘𝑅)𝑔𝜑) ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0)) → (𝑒(t*rec‘𝑅)𝑓 → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))
9796impcom 396 . . . . . . . . . . . . . . . . . . . 20 ((𝑒(t*rec‘𝑅)𝑓 ∧ ((𝑓(t*rec‘𝑅)𝑔𝜑) ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0))) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))
9897anassrs 459 . . . . . . . . . . . . . . . . . . 19 (((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔𝜑)) ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0)) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))
9998expcom 402 . . . . . . . . . . . . . . . . . 18 ((𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0) → ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔𝜑)) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))
10099expcom 402 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → (𝑒(𝑅𝑟𝑛)𝑓 → ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔𝜑)) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))))
101100rexlimiv 3174 . . . . . . . . . . . . . . . 16 (∃𝑛 ∈ ℕ0 𝑒(𝑅𝑟𝑛)𝑓 → ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔𝜑)) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))
10213, 101mpcom 38 . . . . . . . . . . . . . . 15 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔𝜑)) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))
103102anassrs 459 . . . . . . . . . . . . . 14 (((𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔) ∧ 𝜑) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))
104103expcom 402 . . . . . . . . . . . . 13 (𝜑 → ((𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))
105104exlimdv 2028 . . . . . . . . . . . 12 (𝜑 → (∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))
1065, 6, 105sylc 65 . . . . . . . . . . 11 ((⟨𝑒, 𝑔⟩ = ⟨𝑒, 𝑔⟩ ∧ (∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔) ∧ 𝜑)) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))
107 eleq1 2832 . . . . . . . . . . 11 (𝑑 = ⟨𝑒, 𝑔⟩ → (𝑑 ∈ (t*rec‘𝑅) ↔ ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))
108106, 107syl5ibr 237 . . . . . . . . . 10 (𝑑 = ⟨𝑒, 𝑔⟩ → ((⟨𝑒, 𝑔⟩ = ⟨𝑒, 𝑔⟩ ∧ (∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔) ∧ 𝜑)) → 𝑑 ∈ (t*rec‘𝑅)))
1094, 108sylbid 231 . . . . . . . . 9 (𝑑 = ⟨𝑒, 𝑔⟩ → ((𝑑 = ⟨𝑒, 𝑔⟩ ∧ (∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔) ∧ 𝜑)) → 𝑑 ∈ (t*rec‘𝑅)))
110109anabsi5 659 . . . . . . . 8 ((𝑑 = ⟨𝑒, 𝑔⟩ ∧ (∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔) ∧ 𝜑)) → 𝑑 ∈ (t*rec‘𝑅))
111110anassrs 459 . . . . . . 7 (((𝑑 = ⟨𝑒, 𝑔⟩ ∧ ∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔)) ∧ 𝜑) → 𝑑 ∈ (t*rec‘𝑅))
112111expcom 402 . . . . . 6 (𝜑 → ((𝑑 = ⟨𝑒, 𝑔⟩ ∧ ∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔)) → 𝑑 ∈ (t*rec‘𝑅)))
113112exlimdvv 2029 . . . . 5 (𝜑 → (∃𝑒𝑔(𝑑 = ⟨𝑒, 𝑔⟩ ∧ ∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔)) → 𝑑 ∈ (t*rec‘𝑅)))
1142, 113syl5bi 233 . . . 4 (𝜑 → (𝑑 ∈ {⟨𝑒, 𝑔⟩ ∣ ∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔)} → 𝑑 ∈ (t*rec‘𝑅)))
115 eleq2 2833 . . . . 5 (((t*rec‘𝑅) ∘ (t*rec‘𝑅)) = {⟨𝑒, 𝑔⟩ ∣ ∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔)} → (𝑑 ∈ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ↔ 𝑑 ∈ {⟨𝑒, 𝑔⟩ ∣ ∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔)}))
116115imbi1d 332 . . . 4 (((t*rec‘𝑅) ∘ (t*rec‘𝑅)) = {⟨𝑒, 𝑔⟩ ∣ ∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔)} → ((𝑑 ∈ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) → 𝑑 ∈ (t*rec‘𝑅)) ↔ (𝑑 ∈ {⟨𝑒, 𝑔⟩ ∣ ∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔)} → 𝑑 ∈ (t*rec‘𝑅))))
117114, 116syl5ibr 237 . . 3 (((t*rec‘𝑅) ∘ (t*rec‘𝑅)) = {⟨𝑒, 𝑔⟩ ∣ ∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔)} → (𝜑 → (𝑑 ∈ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) → 𝑑 ∈ (t*rec‘𝑅))))
1181, 117ax-mp 5 . 2 (𝜑 → (𝑑 ∈ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) → 𝑑 ∈ (t*rec‘𝑅)))
119118ssrdv 3769 1 (𝜑 → ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wex 1874  wcel 2155  wrex 3056  Vcvv 3350  wss 3734  cop 4342   class class class wbr 4811  {copab 4873  ccom 5283  Rel wrel 5284  cfv 6070  (class class class)co 6846   + caddc 10196  0cn0 11543  𝑟crelexp 14061  t*reccrtrcl 14096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-er 7951  df-en 8165  df-dom 8166  df-sdom 8167  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10527  df-neg 10528  df-nn 11280  df-2 11340  df-n0 11544  df-z 11630  df-uz 11894  df-seq 13016  df-relexp 14062  df-rtrclrec 14097
This theorem is referenced by:  dfrtrcl2  14103
  Copyright terms: Public domain W3C validator