| Mathbox for Richard Penner | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclsnvobr | Structured version Visualization version GIF version | ||
| Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then they are related the opposite way. (Contributed by RP, 21-May-2021.) | 
| Ref | Expression | 
|---|---|
| ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | 
| ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) | 
| ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) | 
| Ref | Expression | 
|---|---|
| ntrclsnvobr | ⊢ (𝜑 → 𝐾𝐷𝐼) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ntrcls.o | . . 3 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
| 2 | ntrcls.d | . . 3 ⊢ 𝐷 = (𝑂‘𝐵) | |
| 3 | ntrcls.r | . . . 4 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
| 4 | 2, 3 | ntrclsbex 43988 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) | 
| 5 | 1, 2, 4 | dssmapnvod 43974 | . 2 ⊢ (𝜑 → ◡𝐷 = 𝐷) | 
| 6 | 1, 2, 3 | ntrclsf1o 44005 | . . . 4 ⊢ (𝜑 → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) | 
| 7 | f1orel 6832 | . . . 4 ⊢ (𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵) → Rel 𝐷) | |
| 8 | relbrcnvg 6105 | . . . 4 ⊢ (Rel 𝐷 → (𝐾◡𝐷𝐼 ↔ 𝐼𝐷𝐾)) | |
| 9 | 6, 7, 8 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐾◡𝐷𝐼 ↔ 𝐼𝐷𝐾)) | 
| 10 | 3, 9 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐾◡𝐷𝐼) | 
| 11 | 5, 10 | breqdi 5140 | 1 ⊢ (𝜑 → 𝐾𝐷𝐼) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 Vcvv 3464 ∖ cdif 3930 𝒫 cpw 4582 class class class wbr 5125 ↦ cmpt 5207 ◡ccnv 5666 Rel wrel 5672 –1-1-onto→wf1o 6541 ‘cfv 6542 (class class class)co 7414 ↑m cmap 8849 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7997 df-2nd 7998 df-map 8851 | 
| This theorem is referenced by: ntrclskex 44008 ntrclsfv2 44010 ntrclselnel2 44012 ntrclsfveq2 44015 ntrclsk4 44026 | 
| Copyright terms: Public domain | W3C validator |