Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > breq123d | Structured version Visualization version GIF version |
Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
Ref | Expression |
---|---|
breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
breq123d.2 | ⊢ (𝜑 → 𝑅 = 𝑆) |
breq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
breq123d | ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑆𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | breq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | 1, 2 | breq12d 5087 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
4 | breq123d.2 | . . 3 ⊢ (𝜑 → 𝑅 = 𝑆) | |
5 | 4 | breqd 5085 | . 2 ⊢ (𝜑 → (𝐵𝑅𝐷 ↔ 𝐵𝑆𝐷)) |
6 | 3, 5 | bitrd 278 | 1 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑆𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 class class class wbr 5074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 |
This theorem is referenced by: sbcbr123 5128 fmptco 7001 xpsle 17290 invfuc 17692 yonedainv 17999 opphllem3 27110 lmif 27146 islmib 27148 iscgra 27170 isinag 27199 fmptcof2 30994 submomnd 31336 sgnsv 31427 inftmrel 31434 isinftm 31435 submarchi 31440 suborng 31514 rprmval 31664 uncov 35758 iscvlat 37337 paddfval 37811 lhpset 38009 tendofset 38772 diaffval 39044 fnwe2val 40874 aomclem8 40886 afv2eq12d 44707 |
Copyright terms: Public domain | W3C validator |