| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breq123d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
| Ref | Expression |
|---|---|
| breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| breq123d.2 | ⊢ (𝜑 → 𝑅 = 𝑆) |
| breq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| breq123d | ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑆𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | breq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 3 | 1, 2 | breq12d 5105 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| 4 | breq123d.2 | . . 3 ⊢ (𝜑 → 𝑅 = 𝑆) | |
| 5 | 4 | breqd 5103 | . 2 ⊢ (𝜑 → (𝐵𝑅𝐷 ↔ 𝐵𝑆𝐷)) |
| 6 | 3, 5 | bitrd 279 | 1 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑆𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 class class class wbr 5092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 |
| This theorem is referenced by: sbcbr123 5146 fmptco 7063 xpsle 17483 invfuc 17884 yonedainv 18187 submomnd 20011 suborng 20761 opphllem3 28694 lmif 28730 islmib 28732 iscgra 28754 isinag 28783 fmptcof2 32601 sgnsv 33103 inftmrel 33123 isinftm 33124 submarchi 33129 rlocval 33200 rprmval 33454 weiunlem1 36446 uncov 37591 iscvlat 39312 paddfval 39786 lhpset 39984 tendofset 40747 diaffval 41019 fnwe2val 43032 aomclem8 43044 afv2eq12d 47209 |
| Copyright terms: Public domain | W3C validator |