| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breq123d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
| Ref | Expression |
|---|---|
| breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| breq123d.2 | ⊢ (𝜑 → 𝑅 = 𝑆) |
| breq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| breq123d | ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑆𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | breq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 3 | 1, 2 | breq12d 5123 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| 4 | breq123d.2 | . . 3 ⊢ (𝜑 → 𝑅 = 𝑆) | |
| 5 | 4 | breqd 5121 | . 2 ⊢ (𝜑 → (𝐵𝑅𝐷 ↔ 𝐵𝑆𝐷)) |
| 6 | 3, 5 | bitrd 279 | 1 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑆𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 class class class wbr 5110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 |
| This theorem is referenced by: sbcbr123 5164 fmptco 7104 xpsle 17549 invfuc 17946 yonedainv 18249 opphllem3 28683 lmif 28719 islmib 28721 iscgra 28743 isinag 28772 fmptcof2 32588 submomnd 33031 sgnsv 33124 inftmrel 33141 isinftm 33142 submarchi 33147 rlocval 33217 suborng 33300 rprmval 33494 weiunlem1 36457 uncov 37602 iscvlat 39323 paddfval 39798 lhpset 39996 tendofset 40759 diaffval 41031 fnwe2val 43045 aomclem8 43057 afv2eq12d 47220 |
| Copyright terms: Public domain | W3C validator |