MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  breq123d Structured version   Visualization version   GIF version

Theorem breq123d 5088
Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.)
Hypotheses
Ref Expression
breq1d.1 (𝜑𝐴 = 𝐵)
breq123d.2 (𝜑𝑅 = 𝑆)
breq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
breq123d (𝜑 → (𝐴𝑅𝐶𝐵𝑆𝐷))

Proof of Theorem breq123d
StepHypRef Expression
1 breq1d.1 . . 3 (𝜑𝐴 = 𝐵)
2 breq123d.3 . . 3 (𝜑𝐶 = 𝐷)
31, 2breq12d 5087 . 2 (𝜑 → (𝐴𝑅𝐶𝐵𝑅𝐷))
4 breq123d.2 . . 3 (𝜑𝑅 = 𝑆)
54breqd 5085 . 2 (𝜑 → (𝐵𝑅𝐷𝐵𝑆𝐷))
63, 5bitrd 278 1 (𝜑 → (𝐴𝑅𝐶𝐵𝑆𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539   class class class wbr 5074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075
This theorem is referenced by:  sbcbr123  5128  fmptco  7001  xpsle  17290  invfuc  17692  yonedainv  17999  opphllem3  27110  lmif  27146  islmib  27148  iscgra  27170  isinag  27199  fmptcof2  30994  submomnd  31336  sgnsv  31427  inftmrel  31434  isinftm  31435  submarchi  31440  suborng  31514  rprmval  31664  uncov  35758  iscvlat  37337  paddfval  37811  lhpset  38009  tendofset  38772  diaffval  39044  fnwe2val  40874  aomclem8  40886  afv2eq12d  44707
  Copyright terms: Public domain W3C validator