MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  breq123d Structured version   Visualization version   GIF version

Theorem breq123d 5180
Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.)
Hypotheses
Ref Expression
breq1d.1 (𝜑𝐴 = 𝐵)
breq123d.2 (𝜑𝑅 = 𝑆)
breq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
breq123d (𝜑 → (𝐴𝑅𝐶𝐵𝑆𝐷))

Proof of Theorem breq123d
StepHypRef Expression
1 breq1d.1 . . 3 (𝜑𝐴 = 𝐵)
2 breq123d.3 . . 3 (𝜑𝐶 = 𝐷)
31, 2breq12d 5179 . 2 (𝜑 → (𝐴𝑅𝐶𝐵𝑅𝐷))
4 breq123d.2 . . 3 (𝜑𝑅 = 𝑆)
54breqd 5177 . 2 (𝜑 → (𝐵𝑅𝐷𝐵𝑆𝐷))
63, 5bitrd 279 1 (𝜑 → (𝐴𝑅𝐶𝐵𝑆𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537   class class class wbr 5166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167
This theorem is referenced by:  sbcbr123  5220  fmptco  7163  xpsle  17639  invfuc  18044  yonedainv  18351  opphllem3  28775  lmif  28811  islmib  28813  iscgra  28835  isinag  28864  fmptcof2  32675  submomnd  33060  sgnsv  33153  inftmrel  33160  isinftm  33161  submarchi  33166  rlocval  33231  suborng  33310  rprmval  33509  weiunlem1  36428  uncov  37561  iscvlat  39279  paddfval  39754  lhpset  39952  tendofset  40715  diaffval  40987  fnwe2val  43006  aomclem8  43018  afv2eq12d  47130
  Copyright terms: Public domain W3C validator