MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  breq123d Structured version   Visualization version   GIF version

Theorem breq123d 5103
Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.)
Hypotheses
Ref Expression
breq1d.1 (𝜑𝐴 = 𝐵)
breq123d.2 (𝜑𝑅 = 𝑆)
breq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
breq123d (𝜑 → (𝐴𝑅𝐶𝐵𝑆𝐷))

Proof of Theorem breq123d
StepHypRef Expression
1 breq1d.1 . . 3 (𝜑𝐴 = 𝐵)
2 breq123d.3 . . 3 (𝜑𝐶 = 𝐷)
31, 2breq12d 5102 . 2 (𝜑 → (𝐴𝑅𝐶𝐵𝑅𝐷))
4 breq123d.2 . . 3 (𝜑𝑅 = 𝑆)
54breqd 5100 . 2 (𝜑 → (𝐵𝑅𝐷𝐵𝑆𝐷))
63, 5bitrd 279 1 (𝜑 → (𝐴𝑅𝐶𝐵𝑆𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541   class class class wbr 5089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090
This theorem is referenced by:  sbcbr123  5143  fmptco  7062  xpsle  17483  invfuc  17884  yonedainv  18187  submomnd  20044  suborng  20791  opphllem3  28727  lmif  28763  islmib  28765  iscgra  28787  isinag  28816  fmptcof2  32639  sgnsv  33129  inftmrel  33149  isinftm  33150  submarchi  33155  rlocval  33226  rprmval  33481  weiunlem1  36506  uncov  37651  iscvlat  39432  paddfval  39906  lhpset  40104  tendofset  40867  diaffval  41139  fnwe2val  43152  aomclem8  43164  afv2eq12d  47325
  Copyright terms: Public domain W3C validator