| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breq123d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
| Ref | Expression |
|---|---|
| breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| breq123d.2 | ⊢ (𝜑 → 𝑅 = 𝑆) |
| breq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| breq123d | ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑆𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | breq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 3 | 1, 2 | breq12d 5115 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| 4 | breq123d.2 | . . 3 ⊢ (𝜑 → 𝑅 = 𝑆) | |
| 5 | 4 | breqd 5113 | . 2 ⊢ (𝜑 → (𝐵𝑅𝐷 ↔ 𝐵𝑆𝐷)) |
| 6 | 3, 5 | bitrd 279 | 1 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑆𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 class class class wbr 5102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 |
| This theorem is referenced by: sbcbr123 5156 fmptco 7083 xpsle 17518 invfuc 17919 yonedainv 18222 submomnd 20046 suborng 20796 opphllem3 28729 lmif 28765 islmib 28767 iscgra 28789 isinag 28818 fmptcof2 32631 sgnsv 33132 inftmrel 33149 isinftm 33150 submarchi 33155 rlocval 33226 rprmval 33480 weiunlem1 36443 uncov 37588 iscvlat 39309 paddfval 39784 lhpset 39982 tendofset 40745 diaffval 41017 fnwe2val 43031 aomclem8 43043 afv2eq12d 47209 |
| Copyright terms: Public domain | W3C validator |