| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breq123d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
| Ref | Expression |
|---|---|
| breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| breq123d.2 | ⊢ (𝜑 → 𝑅 = 𝑆) |
| breq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| breq123d | ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑆𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | breq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 3 | 1, 2 | breq12d 5102 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| 4 | breq123d.2 | . . 3 ⊢ (𝜑 → 𝑅 = 𝑆) | |
| 5 | 4 | breqd 5100 | . 2 ⊢ (𝜑 → (𝐵𝑅𝐷 ↔ 𝐵𝑆𝐷)) |
| 6 | 3, 5 | bitrd 279 | 1 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑆𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 class class class wbr 5089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 |
| This theorem is referenced by: sbcbr123 5143 fmptco 7062 xpsle 17483 invfuc 17884 yonedainv 18187 submomnd 20044 suborng 20791 opphllem3 28727 lmif 28763 islmib 28765 iscgra 28787 isinag 28816 fmptcof2 32639 sgnsv 33129 inftmrel 33149 isinftm 33150 submarchi 33155 rlocval 33226 rprmval 33481 weiunlem1 36506 uncov 37651 iscvlat 39432 paddfval 39906 lhpset 40104 tendofset 40867 diaffval 41139 fnwe2val 43152 aomclem8 43164 afv2eq12d 47325 |
| Copyright terms: Public domain | W3C validator |