![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breq123d | Structured version Visualization version GIF version |
Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
Ref | Expression |
---|---|
breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
breq123d.2 | ⊢ (𝜑 → 𝑅 = 𝑆) |
breq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
breq123d | ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑆𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | breq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | 1, 2 | breq12d 5160 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
4 | breq123d.2 | . . 3 ⊢ (𝜑 → 𝑅 = 𝑆) | |
5 | 4 | breqd 5158 | . 2 ⊢ (𝜑 → (𝐵𝑅𝐷 ↔ 𝐵𝑆𝐷)) |
6 | 3, 5 | bitrd 279 | 1 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑆𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1536 class class class wbr 5147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 |
This theorem is referenced by: sbcbr123 5201 fmptco 7148 xpsle 17625 invfuc 18030 yonedainv 18337 opphllem3 28771 lmif 28807 islmib 28809 iscgra 28831 isinag 28860 fmptcof2 32673 submomnd 33069 sgnsv 33162 inftmrel 33169 isinftm 33170 submarchi 33175 rlocval 33245 suborng 33324 rprmval 33523 weiunlem1 36444 uncov 37587 iscvlat 39304 paddfval 39779 lhpset 39977 tendofset 40740 diaffval 41012 fnwe2val 43037 aomclem8 43049 afv2eq12d 47164 |
Copyright terms: Public domain | W3C validator |