| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clsneibex | Structured version Visualization version GIF version | ||
| Description: If (pseudo-)closure and (pseudo-)neighborhood functions are related by the composite operator, 𝐻, then the base set exists. (Contributed by RP, 4-Jun-2021.) |
| Ref | Expression |
|---|---|
| clsneibex.d | ⊢ 𝐷 = (𝑃‘𝐵) |
| clsneibex.h | ⊢ 𝐻 = (𝐹 ∘ 𝐷) |
| clsneibex.r | ⊢ (𝜑 → 𝐾𝐻𝑁) |
| Ref | Expression |
|---|---|
| clsneibex | ⊢ (𝜑 → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clsneibex.h | . . . . 5 ⊢ 𝐻 = (𝐹 ∘ 𝐷) | |
| 2 | clsneibex.d | . . . . . 6 ⊢ 𝐷 = (𝑃‘𝐵) | |
| 3 | 2 | coeq2i 5826 | . . . . 5 ⊢ (𝐹 ∘ 𝐷) = (𝐹 ∘ (𝑃‘𝐵)) |
| 4 | 1, 3 | eqtri 2753 | . . . 4 ⊢ 𝐻 = (𝐹 ∘ (𝑃‘𝐵)) |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐻 = (𝐹 ∘ (𝑃‘𝐵))) |
| 6 | clsneibex.r | . . 3 ⊢ (𝜑 → 𝐾𝐻𝑁) | |
| 7 | 5, 6 | breqdi 5124 | . 2 ⊢ (𝜑 → 𝐾(𝐹 ∘ (𝑃‘𝐵))𝑁) |
| 8 | brne0 5159 | . 2 ⊢ (𝐾(𝐹 ∘ (𝑃‘𝐵))𝑁 → (𝐹 ∘ (𝑃‘𝐵)) ≠ ∅) | |
| 9 | fvprc 6852 | . . . . . . . 8 ⊢ (¬ 𝐵 ∈ V → (𝑃‘𝐵) = ∅) | |
| 10 | 9 | rneqd 5904 | . . . . . . 7 ⊢ (¬ 𝐵 ∈ V → ran (𝑃‘𝐵) = ran ∅) |
| 11 | rn0 5891 | . . . . . . 7 ⊢ ran ∅ = ∅ | |
| 12 | 10, 11 | eqtrdi 2781 | . . . . . 6 ⊢ (¬ 𝐵 ∈ V → ran (𝑃‘𝐵) = ∅) |
| 13 | 12 | ineq2d 4185 | . . . . 5 ⊢ (¬ 𝐵 ∈ V → (dom 𝐹 ∩ ran (𝑃‘𝐵)) = (dom 𝐹 ∩ ∅)) |
| 14 | in0 4360 | . . . . 5 ⊢ (dom 𝐹 ∩ ∅) = ∅ | |
| 15 | 13, 14 | eqtrdi 2781 | . . . 4 ⊢ (¬ 𝐵 ∈ V → (dom 𝐹 ∩ ran (𝑃‘𝐵)) = ∅) |
| 16 | 15 | coemptyd 14951 | . . 3 ⊢ (¬ 𝐵 ∈ V → (𝐹 ∘ (𝑃‘𝐵)) = ∅) |
| 17 | 16 | necon1ai 2953 | . 2 ⊢ ((𝐹 ∘ (𝑃‘𝐵)) ≠ ∅ → 𝐵 ∈ V) |
| 18 | 7, 8, 17 | 3syl 18 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∩ cin 3915 ∅c0 4298 class class class wbr 5109 dom cdm 5640 ran crn 5641 ∘ ccom 5644 ‘cfv 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-iota 6466 df-fv 6521 |
| This theorem is referenced by: clsneircomplex 44085 clsneif1o 44086 clsneicnv 44087 clsneikex 44088 clsneinex 44089 clsneiel1 44090 |
| Copyright terms: Public domain | W3C validator |