Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsneibex Structured version   Visualization version   GIF version

Theorem clsneibex 43455
Description: If (pseudo-)closure and (pseudo-)neighborhood functions are related by the composite operator, 𝐻, then the base set exists. (Contributed by RP, 4-Jun-2021.)
Hypotheses
Ref Expression
clsneibex.d 𝐷 = (𝑃𝐵)
clsneibex.h 𝐻 = (𝐹𝐷)
clsneibex.r (𝜑𝐾𝐻𝑁)
Assertion
Ref Expression
clsneibex (𝜑𝐵 ∈ V)

Proof of Theorem clsneibex
StepHypRef Expression
1 clsneibex.h . . . . 5 𝐻 = (𝐹𝐷)
2 clsneibex.d . . . . . 6 𝐷 = (𝑃𝐵)
32coeq2i 5857 . . . . 5 (𝐹𝐷) = (𝐹 ∘ (𝑃𝐵))
41, 3eqtri 2755 . . . 4 𝐻 = (𝐹 ∘ (𝑃𝐵))
54a1i 11 . . 3 (𝜑𝐻 = (𝐹 ∘ (𝑃𝐵)))
6 clsneibex.r . . 3 (𝜑𝐾𝐻𝑁)
75, 6breqdi 5157 . 2 (𝜑𝐾(𝐹 ∘ (𝑃𝐵))𝑁)
8 brne0 5192 . 2 (𝐾(𝐹 ∘ (𝑃𝐵))𝑁 → (𝐹 ∘ (𝑃𝐵)) ≠ ∅)
9 fvprc 6883 . . . . . . . 8 𝐵 ∈ V → (𝑃𝐵) = ∅)
109rneqd 5934 . . . . . . 7 𝐵 ∈ V → ran (𝑃𝐵) = ran ∅)
11 rn0 5922 . . . . . . 7 ran ∅ = ∅
1210, 11eqtrdi 2783 . . . . . 6 𝐵 ∈ V → ran (𝑃𝐵) = ∅)
1312ineq2d 4208 . . . . 5 𝐵 ∈ V → (dom 𝐹 ∩ ran (𝑃𝐵)) = (dom 𝐹 ∩ ∅))
14 in0 4387 . . . . 5 (dom 𝐹 ∩ ∅) = ∅
1513, 14eqtrdi 2783 . . . 4 𝐵 ∈ V → (dom 𝐹 ∩ ran (𝑃𝐵)) = ∅)
1615coemptyd 14950 . . 3 𝐵 ∈ V → (𝐹 ∘ (𝑃𝐵)) = ∅)
1716necon1ai 2963 . 2 ((𝐹 ∘ (𝑃𝐵)) ≠ ∅ → 𝐵 ∈ V)
187, 8, 173syl 18 1 (𝜑𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1534  wcel 2099  wne 2935  Vcvv 3469  cin 3943  c0 4318   class class class wbr 5142  dom cdm 5672  ran crn 5673  ccom 5676  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-iota 6494  df-fv 6550
This theorem is referenced by:  clsneircomplex  43456  clsneif1o  43457  clsneicnv  43458  clsneikex  43459  clsneinex  43460  clsneiel1  43461
  Copyright terms: Public domain W3C validator