Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsneibex Structured version   Visualization version   GIF version

Theorem clsneibex 44093
Description: If (pseudo-)closure and (pseudo-)neighborhood functions are related by the composite operator, 𝐻, then the base set exists. (Contributed by RP, 4-Jun-2021.)
Hypotheses
Ref Expression
clsneibex.d 𝐷 = (𝑃𝐵)
clsneibex.h 𝐻 = (𝐹𝐷)
clsneibex.r (𝜑𝐾𝐻𝑁)
Assertion
Ref Expression
clsneibex (𝜑𝐵 ∈ V)

Proof of Theorem clsneibex
StepHypRef Expression
1 clsneibex.h . . . . 5 𝐻 = (𝐹𝐷)
2 clsneibex.d . . . . . 6 𝐷 = (𝑃𝐵)
32coeq2i 5845 . . . . 5 (𝐹𝐷) = (𝐹 ∘ (𝑃𝐵))
41, 3eqtri 2759 . . . 4 𝐻 = (𝐹 ∘ (𝑃𝐵))
54a1i 11 . . 3 (𝜑𝐻 = (𝐹 ∘ (𝑃𝐵)))
6 clsneibex.r . . 3 (𝜑𝐾𝐻𝑁)
75, 6breqdi 5139 . 2 (𝜑𝐾(𝐹 ∘ (𝑃𝐵))𝑁)
8 brne0 5174 . 2 (𝐾(𝐹 ∘ (𝑃𝐵))𝑁 → (𝐹 ∘ (𝑃𝐵)) ≠ ∅)
9 fvprc 6873 . . . . . . . 8 𝐵 ∈ V → (𝑃𝐵) = ∅)
109rneqd 5923 . . . . . . 7 𝐵 ∈ V → ran (𝑃𝐵) = ran ∅)
11 rn0 5910 . . . . . . 7 ran ∅ = ∅
1210, 11eqtrdi 2787 . . . . . 6 𝐵 ∈ V → ran (𝑃𝐵) = ∅)
1312ineq2d 4200 . . . . 5 𝐵 ∈ V → (dom 𝐹 ∩ ran (𝑃𝐵)) = (dom 𝐹 ∩ ∅))
14 in0 4375 . . . . 5 (dom 𝐹 ∩ ∅) = ∅
1513, 14eqtrdi 2787 . . . 4 𝐵 ∈ V → (dom 𝐹 ∩ ran (𝑃𝐵)) = ∅)
1615coemptyd 15003 . . 3 𝐵 ∈ V → (𝐹 ∘ (𝑃𝐵)) = ∅)
1716necon1ai 2960 . 2 ((𝐹 ∘ (𝑃𝐵)) ≠ ∅ → 𝐵 ∈ V)
187, 8, 173syl 18 1 (𝜑𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wne 2933  Vcvv 3464  cin 3930  c0 4313   class class class wbr 5124  dom cdm 5659  ran crn 5660  ccom 5663  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-iota 6489  df-fv 6544
This theorem is referenced by:  clsneircomplex  44094  clsneif1o  44095  clsneicnv  44096  clsneikex  44097  clsneinex  44098  clsneiel1  44099
  Copyright terms: Public domain W3C validator