Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsneibex Structured version   Visualization version   GIF version

Theorem clsneibex 41665
Description: If (pseudo-)closure and (pseudo-)neighborhood functions are related by the composite operator, 𝐻, then the base set exists. (Contributed by RP, 4-Jun-2021.)
Hypotheses
Ref Expression
clsneibex.d 𝐷 = (𝑃𝐵)
clsneibex.h 𝐻 = (𝐹𝐷)
clsneibex.r (𝜑𝐾𝐻𝑁)
Assertion
Ref Expression
clsneibex (𝜑𝐵 ∈ V)

Proof of Theorem clsneibex
StepHypRef Expression
1 clsneibex.h . . . . 5 𝐻 = (𝐹𝐷)
2 clsneibex.d . . . . . 6 𝐷 = (𝑃𝐵)
32coeq2i 5766 . . . . 5 (𝐹𝐷) = (𝐹 ∘ (𝑃𝐵))
41, 3eqtri 2767 . . . 4 𝐻 = (𝐹 ∘ (𝑃𝐵))
54a1i 11 . . 3 (𝜑𝐻 = (𝐹 ∘ (𝑃𝐵)))
6 clsneibex.r . . 3 (𝜑𝐾𝐻𝑁)
75, 6breqdi 5093 . 2 (𝜑𝐾(𝐹 ∘ (𝑃𝐵))𝑁)
8 brne0 5128 . 2 (𝐾(𝐹 ∘ (𝑃𝐵))𝑁 → (𝐹 ∘ (𝑃𝐵)) ≠ ∅)
9 fvprc 6760 . . . . . . . 8 𝐵 ∈ V → (𝑃𝐵) = ∅)
109rneqd 5844 . . . . . . 7 𝐵 ∈ V → ran (𝑃𝐵) = ran ∅)
11 rn0 5832 . . . . . . 7 ran ∅ = ∅
1210, 11eqtrdi 2795 . . . . . 6 𝐵 ∈ V → ran (𝑃𝐵) = ∅)
1312ineq2d 4151 . . . . 5 𝐵 ∈ V → (dom 𝐹 ∩ ran (𝑃𝐵)) = (dom 𝐹 ∩ ∅))
14 in0 4330 . . . . 5 (dom 𝐹 ∩ ∅) = ∅
1513, 14eqtrdi 2795 . . . 4 𝐵 ∈ V → (dom 𝐹 ∩ ran (𝑃𝐵)) = ∅)
1615coemptyd 14671 . . 3 𝐵 ∈ V → (𝐹 ∘ (𝑃𝐵)) = ∅)
1716necon1ai 2972 . 2 ((𝐹 ∘ (𝑃𝐵)) ≠ ∅ → 𝐵 ∈ V)
187, 8, 173syl 18 1 (𝜑𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2109  wne 2944  Vcvv 3430  cin 3890  c0 4261   class class class wbr 5078  dom cdm 5588  ran crn 5589  ccom 5592  cfv 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-iota 6388  df-fv 6438
This theorem is referenced by:  clsneircomplex  41666  clsneif1o  41667  clsneicnv  41668  clsneikex  41669  clsneinex  41670  clsneiel1  41671
  Copyright terms: Public domain W3C validator