| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clsneibex | Structured version Visualization version GIF version | ||
| Description: If (pseudo-)closure and (pseudo-)neighborhood functions are related by the composite operator, 𝐻, then the base set exists. (Contributed by RP, 4-Jun-2021.) |
| Ref | Expression |
|---|---|
| clsneibex.d | ⊢ 𝐷 = (𝑃‘𝐵) |
| clsneibex.h | ⊢ 𝐻 = (𝐹 ∘ 𝐷) |
| clsneibex.r | ⊢ (𝜑 → 𝐾𝐻𝑁) |
| Ref | Expression |
|---|---|
| clsneibex | ⊢ (𝜑 → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clsneibex.h | . . . . 5 ⊢ 𝐻 = (𝐹 ∘ 𝐷) | |
| 2 | clsneibex.d | . . . . . 6 ⊢ 𝐷 = (𝑃‘𝐵) | |
| 3 | 2 | coeq2i 5800 | . . . . 5 ⊢ (𝐹 ∘ 𝐷) = (𝐹 ∘ (𝑃‘𝐵)) |
| 4 | 1, 3 | eqtri 2754 | . . . 4 ⊢ 𝐻 = (𝐹 ∘ (𝑃‘𝐵)) |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐻 = (𝐹 ∘ (𝑃‘𝐵))) |
| 6 | clsneibex.r | . . 3 ⊢ (𝜑 → 𝐾𝐻𝑁) | |
| 7 | 5, 6 | breqdi 5106 | . 2 ⊢ (𝜑 → 𝐾(𝐹 ∘ (𝑃‘𝐵))𝑁) |
| 8 | brne0 5141 | . 2 ⊢ (𝐾(𝐹 ∘ (𝑃‘𝐵))𝑁 → (𝐹 ∘ (𝑃‘𝐵)) ≠ ∅) | |
| 9 | fvprc 6814 | . . . . . . . 8 ⊢ (¬ 𝐵 ∈ V → (𝑃‘𝐵) = ∅) | |
| 10 | 9 | rneqd 5878 | . . . . . . 7 ⊢ (¬ 𝐵 ∈ V → ran (𝑃‘𝐵) = ran ∅) |
| 11 | rn0 5866 | . . . . . . 7 ⊢ ran ∅ = ∅ | |
| 12 | 10, 11 | eqtrdi 2782 | . . . . . 6 ⊢ (¬ 𝐵 ∈ V → ran (𝑃‘𝐵) = ∅) |
| 13 | 12 | ineq2d 4170 | . . . . 5 ⊢ (¬ 𝐵 ∈ V → (dom 𝐹 ∩ ran (𝑃‘𝐵)) = (dom 𝐹 ∩ ∅)) |
| 14 | in0 4345 | . . . . 5 ⊢ (dom 𝐹 ∩ ∅) = ∅ | |
| 15 | 13, 14 | eqtrdi 2782 | . . . 4 ⊢ (¬ 𝐵 ∈ V → (dom 𝐹 ∩ ran (𝑃‘𝐵)) = ∅) |
| 16 | 15 | coemptyd 14883 | . . 3 ⊢ (¬ 𝐵 ∈ V → (𝐹 ∘ (𝑃‘𝐵)) = ∅) |
| 17 | 16 | necon1ai 2955 | . 2 ⊢ ((𝐹 ∘ (𝑃‘𝐵)) ≠ ∅ → 𝐵 ∈ V) |
| 18 | 7, 8, 17 | 3syl 18 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∩ cin 3901 ∅c0 4283 class class class wbr 5091 dom cdm 5616 ran crn 5617 ∘ ccom 5620 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: clsneircomplex 44135 clsneif1o 44136 clsneicnv 44137 clsneikex 44138 clsneinex 44139 clsneiel1 44140 |
| Copyright terms: Public domain | W3C validator |