Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > clsneibex | Structured version Visualization version GIF version |
Description: If (pseudo-)closure and (pseudo-)neighborhood functions are related by the composite operator, 𝐻, then the base set exists. (Contributed by RP, 4-Jun-2021.) |
Ref | Expression |
---|---|
clsneibex.d | ⊢ 𝐷 = (𝑃‘𝐵) |
clsneibex.h | ⊢ 𝐻 = (𝐹 ∘ 𝐷) |
clsneibex.r | ⊢ (𝜑 → 𝐾𝐻𝑁) |
Ref | Expression |
---|---|
clsneibex | ⊢ (𝜑 → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clsneibex.h | . . . . 5 ⊢ 𝐻 = (𝐹 ∘ 𝐷) | |
2 | clsneibex.d | . . . . . 6 ⊢ 𝐷 = (𝑃‘𝐵) | |
3 | 2 | coeq2i 5766 | . . . . 5 ⊢ (𝐹 ∘ 𝐷) = (𝐹 ∘ (𝑃‘𝐵)) |
4 | 1, 3 | eqtri 2767 | . . . 4 ⊢ 𝐻 = (𝐹 ∘ (𝑃‘𝐵)) |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐻 = (𝐹 ∘ (𝑃‘𝐵))) |
6 | clsneibex.r | . . 3 ⊢ (𝜑 → 𝐾𝐻𝑁) | |
7 | 5, 6 | breqdi 5093 | . 2 ⊢ (𝜑 → 𝐾(𝐹 ∘ (𝑃‘𝐵))𝑁) |
8 | brne0 5128 | . 2 ⊢ (𝐾(𝐹 ∘ (𝑃‘𝐵))𝑁 → (𝐹 ∘ (𝑃‘𝐵)) ≠ ∅) | |
9 | fvprc 6760 | . . . . . . . 8 ⊢ (¬ 𝐵 ∈ V → (𝑃‘𝐵) = ∅) | |
10 | 9 | rneqd 5844 | . . . . . . 7 ⊢ (¬ 𝐵 ∈ V → ran (𝑃‘𝐵) = ran ∅) |
11 | rn0 5832 | . . . . . . 7 ⊢ ran ∅ = ∅ | |
12 | 10, 11 | eqtrdi 2795 | . . . . . 6 ⊢ (¬ 𝐵 ∈ V → ran (𝑃‘𝐵) = ∅) |
13 | 12 | ineq2d 4151 | . . . . 5 ⊢ (¬ 𝐵 ∈ V → (dom 𝐹 ∩ ran (𝑃‘𝐵)) = (dom 𝐹 ∩ ∅)) |
14 | in0 4330 | . . . . 5 ⊢ (dom 𝐹 ∩ ∅) = ∅ | |
15 | 13, 14 | eqtrdi 2795 | . . . 4 ⊢ (¬ 𝐵 ∈ V → (dom 𝐹 ∩ ran (𝑃‘𝐵)) = ∅) |
16 | 15 | coemptyd 14671 | . . 3 ⊢ (¬ 𝐵 ∈ V → (𝐹 ∘ (𝑃‘𝐵)) = ∅) |
17 | 16 | necon1ai 2972 | . 2 ⊢ ((𝐹 ∘ (𝑃‘𝐵)) ≠ ∅ → 𝐵 ∈ V) |
18 | 7, 8, 17 | 3syl 18 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 Vcvv 3430 ∩ cin 3890 ∅c0 4261 class class class wbr 5078 dom cdm 5588 ran crn 5589 ∘ ccom 5592 ‘cfv 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-iota 6388 df-fv 6438 |
This theorem is referenced by: clsneircomplex 41666 clsneif1o 41667 clsneicnv 41668 clsneikex 41669 clsneinex 41670 clsneiel1 41671 |
Copyright terms: Public domain | W3C validator |