Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsneibex Structured version   Visualization version   GIF version

Theorem clsneibex 44092
Description: If (pseudo-)closure and (pseudo-)neighborhood functions are related by the composite operator, 𝐻, then the base set exists. (Contributed by RP, 4-Jun-2021.)
Hypotheses
Ref Expression
clsneibex.d 𝐷 = (𝑃𝐵)
clsneibex.h 𝐻 = (𝐹𝐷)
clsneibex.r (𝜑𝐾𝐻𝑁)
Assertion
Ref Expression
clsneibex (𝜑𝐵 ∈ V)

Proof of Theorem clsneibex
StepHypRef Expression
1 clsneibex.h . . . . 5 𝐻 = (𝐹𝐷)
2 clsneibex.d . . . . . 6 𝐷 = (𝑃𝐵)
32coeq2i 5874 . . . . 5 (𝐹𝐷) = (𝐹 ∘ (𝑃𝐵))
41, 3eqtri 2763 . . . 4 𝐻 = (𝐹 ∘ (𝑃𝐵))
54a1i 11 . . 3 (𝜑𝐻 = (𝐹 ∘ (𝑃𝐵)))
6 clsneibex.r . . 3 (𝜑𝐾𝐻𝑁)
75, 6breqdi 5163 . 2 (𝜑𝐾(𝐹 ∘ (𝑃𝐵))𝑁)
8 brne0 5198 . 2 (𝐾(𝐹 ∘ (𝑃𝐵))𝑁 → (𝐹 ∘ (𝑃𝐵)) ≠ ∅)
9 fvprc 6899 . . . . . . . 8 𝐵 ∈ V → (𝑃𝐵) = ∅)
109rneqd 5952 . . . . . . 7 𝐵 ∈ V → ran (𝑃𝐵) = ran ∅)
11 rn0 5939 . . . . . . 7 ran ∅ = ∅
1210, 11eqtrdi 2791 . . . . . 6 𝐵 ∈ V → ran (𝑃𝐵) = ∅)
1312ineq2d 4228 . . . . 5 𝐵 ∈ V → (dom 𝐹 ∩ ran (𝑃𝐵)) = (dom 𝐹 ∩ ∅))
14 in0 4401 . . . . 5 (dom 𝐹 ∩ ∅) = ∅
1513, 14eqtrdi 2791 . . . 4 𝐵 ∈ V → (dom 𝐹 ∩ ran (𝑃𝐵)) = ∅)
1615coemptyd 15015 . . 3 𝐵 ∈ V → (𝐹 ∘ (𝑃𝐵)) = ∅)
1716necon1ai 2966 . 2 ((𝐹 ∘ (𝑃𝐵)) ≠ ∅ → 𝐵 ∈ V)
187, 8, 173syl 18 1 (𝜑𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  cin 3962  c0 4339   class class class wbr 5148  dom cdm 5689  ran crn 5690  ccom 5693  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-iota 6516  df-fv 6571
This theorem is referenced by:  clsneircomplex  44093  clsneif1o  44094  clsneicnv  44095  clsneikex  44096  clsneinex  44097  clsneiel1  44098
  Copyright terms: Public domain W3C validator