![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clsneibex | Structured version Visualization version GIF version |
Description: If (pseudo-)closure and (pseudo-)neighborhood functions are related by the composite operator, 𝐻, then the base set exists. (Contributed by RP, 4-Jun-2021.) |
Ref | Expression |
---|---|
clsneibex.d | ⊢ 𝐷 = (𝑃‘𝐵) |
clsneibex.h | ⊢ 𝐻 = (𝐹 ∘ 𝐷) |
clsneibex.r | ⊢ (𝜑 → 𝐾𝐻𝑁) |
Ref | Expression |
---|---|
clsneibex | ⊢ (𝜑 → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clsneibex.h | . . . . 5 ⊢ 𝐻 = (𝐹 ∘ 𝐷) | |
2 | clsneibex.d | . . . . . 6 ⊢ 𝐷 = (𝑃‘𝐵) | |
3 | 2 | coeq2i 5874 | . . . . 5 ⊢ (𝐹 ∘ 𝐷) = (𝐹 ∘ (𝑃‘𝐵)) |
4 | 1, 3 | eqtri 2763 | . . . 4 ⊢ 𝐻 = (𝐹 ∘ (𝑃‘𝐵)) |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐻 = (𝐹 ∘ (𝑃‘𝐵))) |
6 | clsneibex.r | . . 3 ⊢ (𝜑 → 𝐾𝐻𝑁) | |
7 | 5, 6 | breqdi 5163 | . 2 ⊢ (𝜑 → 𝐾(𝐹 ∘ (𝑃‘𝐵))𝑁) |
8 | brne0 5198 | . 2 ⊢ (𝐾(𝐹 ∘ (𝑃‘𝐵))𝑁 → (𝐹 ∘ (𝑃‘𝐵)) ≠ ∅) | |
9 | fvprc 6899 | . . . . . . . 8 ⊢ (¬ 𝐵 ∈ V → (𝑃‘𝐵) = ∅) | |
10 | 9 | rneqd 5952 | . . . . . . 7 ⊢ (¬ 𝐵 ∈ V → ran (𝑃‘𝐵) = ran ∅) |
11 | rn0 5939 | . . . . . . 7 ⊢ ran ∅ = ∅ | |
12 | 10, 11 | eqtrdi 2791 | . . . . . 6 ⊢ (¬ 𝐵 ∈ V → ran (𝑃‘𝐵) = ∅) |
13 | 12 | ineq2d 4228 | . . . . 5 ⊢ (¬ 𝐵 ∈ V → (dom 𝐹 ∩ ran (𝑃‘𝐵)) = (dom 𝐹 ∩ ∅)) |
14 | in0 4401 | . . . . 5 ⊢ (dom 𝐹 ∩ ∅) = ∅ | |
15 | 13, 14 | eqtrdi 2791 | . . . 4 ⊢ (¬ 𝐵 ∈ V → (dom 𝐹 ∩ ran (𝑃‘𝐵)) = ∅) |
16 | 15 | coemptyd 15015 | . . 3 ⊢ (¬ 𝐵 ∈ V → (𝐹 ∘ (𝑃‘𝐵)) = ∅) |
17 | 16 | necon1ai 2966 | . 2 ⊢ ((𝐹 ∘ (𝑃‘𝐵)) ≠ ∅ → 𝐵 ∈ V) |
18 | 7, 8, 17 | 3syl 18 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 Vcvv 3478 ∩ cin 3962 ∅c0 4339 class class class wbr 5148 dom cdm 5689 ran crn 5690 ∘ ccom 5693 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-iota 6516 df-fv 6571 |
This theorem is referenced by: clsneircomplex 44093 clsneif1o 44094 clsneicnv 44095 clsneikex 44096 clsneinex 44097 clsneiel1 44098 |
Copyright terms: Public domain | W3C validator |