![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clsneibex | Structured version Visualization version GIF version |
Description: If (pseudo-)closure and (pseudo-)neighborhood functions are related by the composite operator, 𝐻, then the base set exists. (Contributed by RP, 4-Jun-2021.) |
Ref | Expression |
---|---|
clsneibex.d | ⊢ 𝐷 = (𝑃‘𝐵) |
clsneibex.h | ⊢ 𝐻 = (𝐹 ∘ 𝐷) |
clsneibex.r | ⊢ (𝜑 → 𝐾𝐻𝑁) |
Ref | Expression |
---|---|
clsneibex | ⊢ (𝜑 → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clsneibex.h | . . . . 5 ⊢ 𝐻 = (𝐹 ∘ 𝐷) | |
2 | clsneibex.d | . . . . . 6 ⊢ 𝐷 = (𝑃‘𝐵) | |
3 | 2 | coeq2i 5861 | . . . . 5 ⊢ (𝐹 ∘ 𝐷) = (𝐹 ∘ (𝑃‘𝐵)) |
4 | 1, 3 | eqtri 2761 | . . . 4 ⊢ 𝐻 = (𝐹 ∘ (𝑃‘𝐵)) |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐻 = (𝐹 ∘ (𝑃‘𝐵))) |
6 | clsneibex.r | . . 3 ⊢ (𝜑 → 𝐾𝐻𝑁) | |
7 | 5, 6 | breqdi 5164 | . 2 ⊢ (𝜑 → 𝐾(𝐹 ∘ (𝑃‘𝐵))𝑁) |
8 | brne0 5199 | . 2 ⊢ (𝐾(𝐹 ∘ (𝑃‘𝐵))𝑁 → (𝐹 ∘ (𝑃‘𝐵)) ≠ ∅) | |
9 | fvprc 6884 | . . . . . . . 8 ⊢ (¬ 𝐵 ∈ V → (𝑃‘𝐵) = ∅) | |
10 | 9 | rneqd 5938 | . . . . . . 7 ⊢ (¬ 𝐵 ∈ V → ran (𝑃‘𝐵) = ran ∅) |
11 | rn0 5926 | . . . . . . 7 ⊢ ran ∅ = ∅ | |
12 | 10, 11 | eqtrdi 2789 | . . . . . 6 ⊢ (¬ 𝐵 ∈ V → ran (𝑃‘𝐵) = ∅) |
13 | 12 | ineq2d 4213 | . . . . 5 ⊢ (¬ 𝐵 ∈ V → (dom 𝐹 ∩ ran (𝑃‘𝐵)) = (dom 𝐹 ∩ ∅)) |
14 | in0 4392 | . . . . 5 ⊢ (dom 𝐹 ∩ ∅) = ∅ | |
15 | 13, 14 | eqtrdi 2789 | . . . 4 ⊢ (¬ 𝐵 ∈ V → (dom 𝐹 ∩ ran (𝑃‘𝐵)) = ∅) |
16 | 15 | coemptyd 14926 | . . 3 ⊢ (¬ 𝐵 ∈ V → (𝐹 ∘ (𝑃‘𝐵)) = ∅) |
17 | 16 | necon1ai 2969 | . 2 ⊢ ((𝐹 ∘ (𝑃‘𝐵)) ≠ ∅ → 𝐵 ∈ V) |
18 | 7, 8, 17 | 3syl 18 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 Vcvv 3475 ∩ cin 3948 ∅c0 4323 class class class wbr 5149 dom cdm 5677 ran crn 5678 ∘ ccom 5681 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-iota 6496 df-fv 6552 |
This theorem is referenced by: clsneircomplex 42854 clsneif1o 42855 clsneicnv 42856 clsneikex 42857 clsneinex 42858 clsneiel1 42859 |
Copyright terms: Public domain | W3C validator |