Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsneibex Structured version   Visualization version   GIF version

Theorem clsneibex 44075
Description: If (pseudo-)closure and (pseudo-)neighborhood functions are related by the composite operator, 𝐻, then the base set exists. (Contributed by RP, 4-Jun-2021.)
Hypotheses
Ref Expression
clsneibex.d 𝐷 = (𝑃𝐵)
clsneibex.h 𝐻 = (𝐹𝐷)
clsneibex.r (𝜑𝐾𝐻𝑁)
Assertion
Ref Expression
clsneibex (𝜑𝐵 ∈ V)

Proof of Theorem clsneibex
StepHypRef Expression
1 clsneibex.h . . . . 5 𝐻 = (𝐹𝐷)
2 clsneibex.d . . . . . 6 𝐷 = (𝑃𝐵)
32coeq2i 5807 . . . . 5 (𝐹𝐷) = (𝐹 ∘ (𝑃𝐵))
41, 3eqtri 2752 . . . 4 𝐻 = (𝐹 ∘ (𝑃𝐵))
54a1i 11 . . 3 (𝜑𝐻 = (𝐹 ∘ (𝑃𝐵)))
6 clsneibex.r . . 3 (𝜑𝐾𝐻𝑁)
75, 6breqdi 5110 . 2 (𝜑𝐾(𝐹 ∘ (𝑃𝐵))𝑁)
8 brne0 5145 . 2 (𝐾(𝐹 ∘ (𝑃𝐵))𝑁 → (𝐹 ∘ (𝑃𝐵)) ≠ ∅)
9 fvprc 6818 . . . . . . . 8 𝐵 ∈ V → (𝑃𝐵) = ∅)
109rneqd 5884 . . . . . . 7 𝐵 ∈ V → ran (𝑃𝐵) = ran ∅)
11 rn0 5872 . . . . . . 7 ran ∅ = ∅
1210, 11eqtrdi 2780 . . . . . 6 𝐵 ∈ V → ran (𝑃𝐵) = ∅)
1312ineq2d 4173 . . . . 5 𝐵 ∈ V → (dom 𝐹 ∩ ran (𝑃𝐵)) = (dom 𝐹 ∩ ∅))
14 in0 4348 . . . . 5 (dom 𝐹 ∩ ∅) = ∅
1513, 14eqtrdi 2780 . . . 4 𝐵 ∈ V → (dom 𝐹 ∩ ran (𝑃𝐵)) = ∅)
1615coemptyd 14904 . . 3 𝐵 ∈ V → (𝐹 ∘ (𝑃𝐵)) = ∅)
1716necon1ai 2952 . 2 ((𝐹 ∘ (𝑃𝐵)) ≠ ∅ → 𝐵 ∈ V)
187, 8, 173syl 18 1 (𝜑𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wne 2925  Vcvv 3438  cin 3904  c0 4286   class class class wbr 5095  dom cdm 5623  ran crn 5624  ccom 5627  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-iota 6442  df-fv 6494
This theorem is referenced by:  clsneircomplex  44076  clsneif1o  44077  clsneicnv  44078  clsneikex  44079  clsneinex  44080  clsneiel1  44081
  Copyright terms: Public domain W3C validator