Step | Hyp | Ref
| Expression |
1 | | dvfcn 24977 |
. . . . . . 7
⊢ (ℂ
D exp):dom (ℂ D exp)⟶ℂ |
2 | | dvbsss 24971 |
. . . . . . . . 9
⊢ dom
(ℂ D exp) ⊆ ℂ |
3 | | subcl 11150 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑧 − 𝑥) ∈ ℂ) |
4 | 3 | ancoms 458 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧 − 𝑥) ∈ ℂ) |
5 | | efadd 15731 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℂ ∧ (𝑧 − 𝑥) ∈ ℂ) → (exp‘(𝑥 + (𝑧 − 𝑥))) = ((exp‘𝑥) · (exp‘(𝑧 − 𝑥)))) |
6 | 4, 5 | syldan 590 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) →
(exp‘(𝑥 + (𝑧 − 𝑥))) = ((exp‘𝑥) · (exp‘(𝑧 − 𝑥)))) |
7 | | pncan3 11159 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 + (𝑧 − 𝑥)) = 𝑧) |
8 | 7 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) →
(exp‘(𝑥 + (𝑧 − 𝑥))) = (exp‘𝑧)) |
9 | 6, 8 | eqtr3d 2780 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) →
((exp‘𝑥) ·
(exp‘(𝑧 − 𝑥))) = (exp‘𝑧)) |
10 | 9 | mpteq2dva 5170 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦
((exp‘𝑥) ·
(exp‘(𝑧 − 𝑥)))) = (𝑧 ∈ ℂ ↦ (exp‘𝑧))) |
11 | | cnex 10883 |
. . . . . . . . . . . . . . . 16
⊢ ℂ
∈ V |
12 | 11 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℂ → ℂ
∈ V) |
13 | | fvexd 6771 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) →
(exp‘𝑥) ∈
V) |
14 | | fvexd 6771 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) →
(exp‘(𝑧 − 𝑥)) ∈ V) |
15 | | fconstmpt 5640 |
. . . . . . . . . . . . . . . 16
⊢ (ℂ
× {(exp‘𝑥)}) =
(𝑧 ∈ ℂ ↦
(exp‘𝑥)) |
16 | 15 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℂ → (ℂ
× {(exp‘𝑥)}) =
(𝑧 ∈ ℂ ↦
(exp‘𝑥))) |
17 | | eqidd 2739 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦
(exp‘(𝑧 − 𝑥))) = (𝑧 ∈ ℂ ↦ (exp‘(𝑧 − 𝑥)))) |
18 | 12, 13, 14, 16, 17 | offval2 7531 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℂ → ((ℂ
× {(exp‘𝑥)})
∘f · (𝑧 ∈ ℂ ↦ (exp‘(𝑧 − 𝑥)))) = (𝑧 ∈ ℂ ↦ ((exp‘𝑥) · (exp‘(𝑧 − 𝑥))))) |
19 | | eff 15719 |
. . . . . . . . . . . . . . . 16
⊢
exp:ℂ⟶ℂ |
20 | 19 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℂ →
exp:ℂ⟶ℂ) |
21 | 20 | feqmptd 6819 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℂ → exp =
(𝑧 ∈ ℂ ↦
(exp‘𝑧))) |
22 | 10, 18, 21 | 3eqtr4d 2788 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℂ → ((ℂ
× {(exp‘𝑥)})
∘f · (𝑧 ∈ ℂ ↦ (exp‘(𝑧 − 𝑥)))) = exp) |
23 | 22 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℂ → (ℂ
D ((ℂ × {(exp‘𝑥)}) ∘f · (𝑧 ∈ ℂ ↦
(exp‘(𝑧 − 𝑥))))) = (ℂ D
exp)) |
24 | | efcl 15720 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℂ →
(exp‘𝑥) ∈
ℂ) |
25 | | fconstg 6645 |
. . . . . . . . . . . . . . . 16
⊢
((exp‘𝑥)
∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶{(exp‘𝑥)}) |
26 | 24, 25 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℂ → (ℂ
× {(exp‘𝑥)}):ℂ⟶{(exp‘𝑥)}) |
27 | 24 | snssd 4739 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℂ →
{(exp‘𝑥)} ⊆
ℂ) |
28 | 26, 27 | fssd 6602 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℂ → (ℂ
× {(exp‘𝑥)}):ℂ⟶ℂ) |
29 | | ssidd 3940 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℂ → ℂ
⊆ ℂ) |
30 | | efcl 15720 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 − 𝑥) ∈ ℂ → (exp‘(𝑧 − 𝑥)) ∈ ℂ) |
31 | 4, 30 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) →
(exp‘(𝑧 − 𝑥)) ∈
ℂ) |
32 | 31 | fmpttd 6971 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦
(exp‘(𝑧 − 𝑥))):ℂ⟶ℂ) |
33 | | 0cnd 10899 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℂ → 0 ∈
ℂ) |
34 | | 1cnd 10901 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℂ → 1 ∈
ℂ) |
35 | | c0ex 10900 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
V |
36 | 35 | snid 4594 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
{0} |
37 | | opelxpi 5617 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℂ ∧ 0 ∈
{0}) → 〈𝑥,
0〉 ∈ (ℂ × {0})) |
38 | 36, 37 | mpan2 687 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℂ →
〈𝑥, 0〉 ∈
(ℂ × {0})) |
39 | | dvconst 24986 |
. . . . . . . . . . . . . . . . 17
⊢
((exp‘𝑥)
∈ ℂ → (ℂ D (ℂ × {(exp‘𝑥)})) = (ℂ ×
{0})) |
40 | 24, 39 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℂ → (ℂ
D (ℂ × {(exp‘𝑥)})) = (ℂ ×
{0})) |
41 | 38, 40 | eleqtrrd 2842 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℂ →
〈𝑥, 0〉 ∈
(ℂ D (ℂ × {(exp‘𝑥)}))) |
42 | | df-br 5071 |
. . . . . . . . . . . . . . 15
⊢ (𝑥(ℂ D (ℂ ×
{(exp‘𝑥)}))0 ↔
〈𝑥, 0〉 ∈
(ℂ D (ℂ × {(exp‘𝑥)}))) |
43 | 41, 42 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℂ → 𝑥(ℂ D (ℂ ×
{(exp‘𝑥)}))0) |
44 | 20, 4 | cofmpt 6986 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℂ → (exp
∘ (𝑧 ∈ ℂ
↦ (𝑧 − 𝑥))) = (𝑧 ∈ ℂ ↦ (exp‘(𝑧 − 𝑥)))) |
45 | 44 | oveq2d 7271 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℂ → (ℂ
D (exp ∘ (𝑧 ∈
ℂ ↦ (𝑧 −
𝑥)))) = (ℂ D (𝑧 ∈ ℂ ↦
(exp‘(𝑧 − 𝑥))))) |
46 | 4 | fmpttd 6971 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (𝑧 − 𝑥)):ℂ⟶ℂ) |
47 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝑥 → (𝑧 − 𝑥) = (𝑥 − 𝑥)) |
48 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ ℂ ↦ (𝑧 − 𝑥)) = (𝑧 ∈ ℂ ↦ (𝑧 − 𝑥)) |
49 | | ovex 7288 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 − 𝑥) ∈ V |
50 | 47, 48, 49 | fvmpt 6857 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧 − 𝑥))‘𝑥) = (𝑥 − 𝑥)) |
51 | | subid 11170 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ℂ → (𝑥 − 𝑥) = 0) |
52 | 50, 51 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧 − 𝑥))‘𝑥) = 0) |
53 | | dveflem 25048 |
. . . . . . . . . . . . . . . . . 18
⊢ 0(ℂ
D exp)1 |
54 | 52, 53 | eqbrtrdi 5109 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧 − 𝑥))‘𝑥)(ℂ D exp)1) |
55 | | 1ex 10902 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ∈
V |
56 | 55 | snid 4594 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 1 ∈
{1} |
57 | | opelxpi 5617 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ ℂ ∧ 1 ∈
{1}) → 〈𝑥,
1〉 ∈ (ℂ × {1})) |
58 | 56, 57 | mpan2 687 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ℂ →
〈𝑥, 1〉 ∈
(ℂ × {1})) |
59 | | cnelprrecn 10895 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ℂ
∈ {ℝ, ℂ} |
60 | 59 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ ℂ → ℂ
∈ {ℝ, ℂ}) |
61 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈
ℂ) |
62 | | 1cnd 10901 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 1 ∈
ℂ) |
63 | 60 | dvmptid 25026 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ ℂ → (ℂ
D (𝑧 ∈ ℂ ↦
𝑧)) = (𝑧 ∈ ℂ ↦ 1)) |
64 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑥 ∈
ℂ) |
65 | | 0cnd 10899 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 0 ∈
ℂ) |
66 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ ℂ → 𝑥 ∈
ℂ) |
67 | 60, 66 | dvmptc 25027 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ ℂ → (ℂ
D (𝑧 ∈ ℂ ↦
𝑥)) = (𝑧 ∈ ℂ ↦ 0)) |
68 | 60, 61, 62, 63, 64, 65, 67 | dvmptsub 25036 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ℂ → (ℂ
D (𝑧 ∈ ℂ ↦
(𝑧 − 𝑥))) = (𝑧 ∈ ℂ ↦ (1 −
0))) |
69 | | 1m0e1 12024 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (1
− 0) = 1 |
70 | 69 | mpteq2i 5175 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ ℂ ↦ (1
− 0)) = (𝑧 ∈
ℂ ↦ 1) |
71 | | fconstmpt 5640 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℂ
× {1}) = (𝑧 ∈
ℂ ↦ 1) |
72 | 70, 71 | eqtr4i 2769 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ ℂ ↦ (1
− 0)) = (ℂ × {1}) |
73 | 68, 72 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ℂ → (ℂ
D (𝑧 ∈ ℂ ↦
(𝑧 − 𝑥))) = (ℂ ×
{1})) |
74 | 58, 73 | eleqtrrd 2842 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℂ →
〈𝑥, 1〉 ∈
(ℂ D (𝑧 ∈
ℂ ↦ (𝑧 −
𝑥)))) |
75 | | df-br 5071 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥(ℂ D (𝑧 ∈ ℂ ↦ (𝑧 − 𝑥)))1 ↔ 〈𝑥, 1〉 ∈ (ℂ D (𝑧 ∈ ℂ ↦ (𝑧 − 𝑥)))) |
76 | 74, 75 | sylibr 233 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℂ → 𝑥(ℂ D (𝑧 ∈ ℂ ↦ (𝑧 − 𝑥)))1) |
77 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
78 | 20, 29, 46, 29, 29, 29, 34, 34, 54, 76, 77 | dvcobr 25015 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℂ → 𝑥(ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧 − 𝑥))))(1 · 1)) |
79 | | 1t1e1 12065 |
. . . . . . . . . . . . . . . 16
⊢ (1
· 1) = 1 |
80 | 78, 79 | breqtrdi 5111 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℂ → 𝑥(ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧 − 𝑥))))1) |
81 | 45, 80 | breqdi 5085 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℂ → 𝑥(ℂ D (𝑧 ∈ ℂ ↦ (exp‘(𝑧 − 𝑥))))1) |
82 | 28, 29, 32, 29, 29, 33, 34, 43, 81, 77 | dvmulbr 25008 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℂ → 𝑥(ℂ D ((ℂ ×
{(exp‘𝑥)})
∘f · (𝑧 ∈ ℂ ↦ (exp‘(𝑧 − 𝑥)))))((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧 − 𝑥)))‘𝑥)) + (1 · ((ℂ ×
{(exp‘𝑥)})‘𝑥)))) |
83 | 32, 66 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦
(exp‘(𝑧 − 𝑥)))‘𝑥) ∈ ℂ) |
84 | 83 | mul02d 11103 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℂ → (0
· ((𝑧 ∈ ℂ
↦ (exp‘(𝑧
− 𝑥)))‘𝑥)) = 0) |
85 | | fvex 6769 |
. . . . . . . . . . . . . . . . . 18
⊢
(exp‘𝑥) ∈
V |
86 | 85 | fvconst2 7061 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℂ → ((ℂ
× {(exp‘𝑥)})‘𝑥) = (exp‘𝑥)) |
87 | 86 | oveq2d 7271 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℂ → (1
· ((ℂ × {(exp‘𝑥)})‘𝑥)) = (1 · (exp‘𝑥))) |
88 | 24 | mulid2d 10924 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℂ → (1
· (exp‘𝑥)) =
(exp‘𝑥)) |
89 | 87, 88 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℂ → (1
· ((ℂ × {(exp‘𝑥)})‘𝑥)) = (exp‘𝑥)) |
90 | 84, 89 | oveq12d 7273 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℂ → ((0
· ((𝑧 ∈ ℂ
↦ (exp‘(𝑧
− 𝑥)))‘𝑥)) + (1 · ((ℂ
× {(exp‘𝑥)})‘𝑥))) = (0 + (exp‘𝑥))) |
91 | 24 | addid2d 11106 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℂ → (0 +
(exp‘𝑥)) =
(exp‘𝑥)) |
92 | 90, 91 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℂ → ((0
· ((𝑧 ∈ ℂ
↦ (exp‘(𝑧
− 𝑥)))‘𝑥)) + (1 · ((ℂ
× {(exp‘𝑥)})‘𝑥))) = (exp‘𝑥)) |
93 | 82, 92 | breqtrd 5096 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℂ → 𝑥(ℂ D ((ℂ ×
{(exp‘𝑥)})
∘f · (𝑧 ∈ ℂ ↦ (exp‘(𝑧 − 𝑥)))))(exp‘𝑥)) |
94 | 23, 93 | breqdi 5085 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℂ → 𝑥(ℂ D exp)(exp‘𝑥)) |
95 | | vex 3426 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
96 | 95, 85 | breldm 5806 |
. . . . . . . . . . 11
⊢ (𝑥(ℂ D exp)(exp‘𝑥) → 𝑥 ∈ dom (ℂ D exp)) |
97 | 94, 96 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℂ → 𝑥 ∈ dom (ℂ D
exp)) |
98 | 97 | ssriv 3921 |
. . . . . . . . 9
⊢ ℂ
⊆ dom (ℂ D exp) |
99 | 2, 98 | eqssi 3933 |
. . . . . . . 8
⊢ dom
(ℂ D exp) = ℂ |
100 | 99 | feq2i 6576 |
. . . . . . 7
⊢ ((ℂ
D exp):dom (ℂ D exp)⟶ℂ ↔ (ℂ D
exp):ℂ⟶ℂ) |
101 | 1, 100 | mpbi 229 |
. . . . . 6
⊢ (ℂ
D exp):ℂ⟶ℂ |
102 | 101 | a1i 11 |
. . . . 5
⊢ (⊤
→ (ℂ D exp):ℂ⟶ℂ) |
103 | 102 | feqmptd 6819 |
. . . 4
⊢ (⊤
→ (ℂ D exp) = (𝑥
∈ ℂ ↦ ((ℂ D exp)‘𝑥))) |
104 | | ffun 6587 |
. . . . . . 7
⊢ ((ℂ
D exp):dom (ℂ D exp)⟶ℂ → Fun (ℂ D
exp)) |
105 | 1, 104 | ax-mp 5 |
. . . . . 6
⊢ Fun
(ℂ D exp) |
106 | | funbrfv 6802 |
. . . . . 6
⊢ (Fun
(ℂ D exp) → (𝑥(ℂ D exp)(exp‘𝑥) → ((ℂ D exp)‘𝑥) = (exp‘𝑥))) |
107 | 105, 94, 106 | mpsyl 68 |
. . . . 5
⊢ (𝑥 ∈ ℂ → ((ℂ
D exp)‘𝑥) =
(exp‘𝑥)) |
108 | 107 | mpteq2ia 5173 |
. . . 4
⊢ (𝑥 ∈ ℂ ↦
((ℂ D exp)‘𝑥))
= (𝑥 ∈ ℂ ↦
(exp‘𝑥)) |
109 | 103, 108 | eqtrdi 2795 |
. . 3
⊢ (⊤
→ (ℂ D exp) = (𝑥
∈ ℂ ↦ (exp‘𝑥))) |
110 | 19 | a1i 11 |
. . . 4
⊢ (⊤
→ exp:ℂ⟶ℂ) |
111 | 110 | feqmptd 6819 |
. . 3
⊢ (⊤
→ exp = (𝑥 ∈
ℂ ↦ (exp‘𝑥))) |
112 | 109, 111 | eqtr4d 2781 |
. 2
⊢ (⊤
→ (ℂ D exp) = exp) |
113 | 112 | mptru 1546 |
1
⊢ (ℂ
D exp) = exp |