MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvef Structured version   Visualization version   GIF version

Theorem dvef 25955
Description: Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvef (ℂ D exp) = exp

Proof of Theorem dvef
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfcn 25880 . . . . . . 7 (ℂ D exp):dom (ℂ D exp)⟶ℂ
2 dvbsss 25874 . . . . . . . . 9 dom (ℂ D exp) ⊆ ℂ
3 subcl 11489 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑧𝑥) ∈ ℂ)
43ancoms 458 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧𝑥) ∈ ℂ)
5 efadd 16113 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ (𝑧𝑥) ∈ ℂ) → (exp‘(𝑥 + (𝑧𝑥))) = ((exp‘𝑥) · (exp‘(𝑧𝑥))))
64, 5syldan 591 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑥 + (𝑧𝑥))) = ((exp‘𝑥) · (exp‘(𝑧𝑥))))
7 pncan3 11498 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 + (𝑧𝑥)) = 𝑧)
87fveq2d 6890 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑥 + (𝑧𝑥))) = (exp‘𝑧))
96, 8eqtr3d 2771 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((exp‘𝑥) · (exp‘(𝑧𝑥))) = (exp‘𝑧))
109mpteq2dva 5222 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ ((exp‘𝑥) · (exp‘(𝑧𝑥)))) = (𝑧 ∈ ℂ ↦ (exp‘𝑧)))
11 cnex 11218 . . . . . . . . . . . . . . . 16 ℂ ∈ V
1211a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → ℂ ∈ V)
13 fvexd 6901 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘𝑥) ∈ V)
14 fvexd 6901 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑧𝑥)) ∈ V)
15 fconstmpt 5727 . . . . . . . . . . . . . . . 16 (ℂ × {(exp‘𝑥)}) = (𝑧 ∈ ℂ ↦ (exp‘𝑥))
1615a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (ℂ × {(exp‘𝑥)}) = (𝑧 ∈ ℂ ↦ (exp‘𝑥)))
17 eqidd 2735 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))
1812, 13, 14, 16, 17offval2 7699 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → ((ℂ × {(exp‘𝑥)}) ∘f · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))) = (𝑧 ∈ ℂ ↦ ((exp‘𝑥) · (exp‘(𝑧𝑥)))))
19 eff 16100 . . . . . . . . . . . . . . . 16 exp:ℂ⟶ℂ
2019a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → exp:ℂ⟶ℂ)
2120feqmptd 6957 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → exp = (𝑧 ∈ ℂ ↦ (exp‘𝑧)))
2210, 18, 213eqtr4d 2779 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → ((ℂ × {(exp‘𝑥)}) ∘f · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))) = exp)
2322oveq2d 7429 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (ℂ D ((ℂ × {(exp‘𝑥)}) ∘f · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))) = (ℂ D exp))
24 efcl 16101 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
25 fconstg 6775 . . . . . . . . . . . . . . . 16 ((exp‘𝑥) ∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶{(exp‘𝑥)})
2624, 25syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶{(exp‘𝑥)})
2724snssd 4789 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → {(exp‘𝑥)} ⊆ ℂ)
2826, 27fssd 6733 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶ℂ)
29 ssidd 3987 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → ℂ ⊆ ℂ)
30 efcl 16101 . . . . . . . . . . . . . . . 16 ((𝑧𝑥) ∈ ℂ → (exp‘(𝑧𝑥)) ∈ ℂ)
314, 30syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑧𝑥)) ∈ ℂ)
3231fmpttd 7115 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))):ℂ⟶ℂ)
33 c0ex 11237 . . . . . . . . . . . . . . . . . 18 0 ∈ V
3433snid 4642 . . . . . . . . . . . . . . . . 17 0 ∈ {0}
35 opelxpi 5702 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 0 ∈ {0}) → ⟨𝑥, 0⟩ ∈ (ℂ × {0}))
3634, 35mpan2 691 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → ⟨𝑥, 0⟩ ∈ (ℂ × {0}))
37 dvconst 25889 . . . . . . . . . . . . . . . . 17 ((exp‘𝑥) ∈ ℂ → (ℂ D (ℂ × {(exp‘𝑥)})) = (ℂ × {0}))
3824, 37syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (ℂ D (ℂ × {(exp‘𝑥)})) = (ℂ × {0}))
3936, 38eleqtrrd 2836 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → ⟨𝑥, 0⟩ ∈ (ℂ D (ℂ × {(exp‘𝑥)})))
40 df-br 5124 . . . . . . . . . . . . . . 15 (𝑥(ℂ D (ℂ × {(exp‘𝑥)}))0 ↔ ⟨𝑥, 0⟩ ∈ (ℂ D (ℂ × {(exp‘𝑥)})))
4139, 40sylibr 234 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → 𝑥(ℂ D (ℂ × {(exp‘𝑥)}))0)
4220, 4cofmpt 7132 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))
4342oveq2d 7429 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥)))) = (ℂ D (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))
444fmpttd 7115 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (𝑧𝑥)):ℂ⟶ℂ)
45 oveq1 7420 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑥 → (𝑧𝑥) = (𝑥𝑥))
46 eqid 2734 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ℂ ↦ (𝑧𝑥)) = (𝑧 ∈ ℂ ↦ (𝑧𝑥))
47 ovex 7446 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑥) ∈ V
4845, 46, 47fvmpt 6996 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) = (𝑥𝑥))
49 subid 11510 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → (𝑥𝑥) = 0)
5048, 49eqtrd 2769 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) = 0)
51 dveflem 25954 . . . . . . . . . . . . . . . . . 18 0(ℂ D exp)1
5250, 51eqbrtrdi 5162 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥)(ℂ D exp)1)
53 1ex 11239 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ V
5453snid 4642 . . . . . . . . . . . . . . . . . . . 20 1 ∈ {1}
55 opelxpi 5702 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℂ ∧ 1 ∈ {1}) → ⟨𝑥, 1⟩ ∈ (ℂ × {1}))
5654, 55mpan2 691 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → ⟨𝑥, 1⟩ ∈ (ℂ × {1}))
57 cnelprrecn 11230 . . . . . . . . . . . . . . . . . . . . . 22 ℂ ∈ {ℝ, ℂ}
5857a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ → ℂ ∈ {ℝ, ℂ})
59 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
60 1cnd 11238 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 1 ∈ ℂ)
6158dvmptid 25932 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ 𝑧)) = (𝑧 ∈ ℂ ↦ 1))
62 simpl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑥 ∈ ℂ)
63 0cnd 11236 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 0 ∈ ℂ)
64 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
6558, 64dvmptc 25933 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ 𝑥)) = (𝑧 ∈ ℂ ↦ 0))
6658, 59, 60, 61, 62, 63, 65dvmptsub 25942 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (1 − 0)))
67 1m0e1 12369 . . . . . . . . . . . . . . . . . . . . . 22 (1 − 0) = 1
6867mpteq2i 5227 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℂ ↦ (1 − 0)) = (𝑧 ∈ ℂ ↦ 1)
69 fconstmpt 5727 . . . . . . . . . . . . . . . . . . . . 21 (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1)
7068, 69eqtr4i 2760 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ℂ ↦ (1 − 0)) = (ℂ × {1})
7166, 70eqtrdi 2785 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))) = (ℂ × {1}))
7256, 71eleqtrrd 2836 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → ⟨𝑥, 1⟩ ∈ (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))))
73 df-br 5124 . . . . . . . . . . . . . . . . . 18 (𝑥(ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥)))1 ↔ ⟨𝑥, 1⟩ ∈ (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))))
7472, 73sylibr 234 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → 𝑥(ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥)))1)
75 eqid 2734 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
7620, 29, 44, 29, 29, 29, 52, 74, 75dvcobr 25920 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → 𝑥(ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))))(1 · 1))
77 1t1e1 12410 . . . . . . . . . . . . . . . 16 (1 · 1) = 1
7876, 77breqtrdi 5164 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → 𝑥(ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))))1)
7943, 78breqdi 5138 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → 𝑥(ℂ D (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))1)
8028, 29, 32, 29, 29, 41, 79, 75dvmulbr 25912 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → 𝑥(ℂ D ((ℂ × {(exp‘𝑥)}) ∘f · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) + (1 · ((ℂ × {(exp‘𝑥)})‘𝑥))))
8132, 64ffvelcdmd 7085 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥) ∈ ℂ)
8281mul02d 11441 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) = 0)
83 fvex 6899 . . . . . . . . . . . . . . . . . 18 (exp‘𝑥) ∈ V
8483fvconst2 7206 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → ((ℂ × {(exp‘𝑥)})‘𝑥) = (exp‘𝑥))
8584oveq2d 7429 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (1 · ((ℂ × {(exp‘𝑥)})‘𝑥)) = (1 · (exp‘𝑥)))
8624mullidd 11261 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (1 · (exp‘𝑥)) = (exp‘𝑥))
8785, 86eqtrd 2769 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (1 · ((ℂ × {(exp‘𝑥)})‘𝑥)) = (exp‘𝑥))
8882, 87oveq12d 7431 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → ((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) + (1 · ((ℂ × {(exp‘𝑥)})‘𝑥))) = (0 + (exp‘𝑥)))
8924addlidd 11444 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (0 + (exp‘𝑥)) = (exp‘𝑥))
9088, 89eqtrd 2769 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → ((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) + (1 · ((ℂ × {(exp‘𝑥)})‘𝑥))) = (exp‘𝑥))
9180, 90breqtrd 5149 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → 𝑥(ℂ D ((ℂ × {(exp‘𝑥)}) ∘f · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))(exp‘𝑥))
9223, 91breqdi 5138 . . . . . . . . . . 11 (𝑥 ∈ ℂ → 𝑥(ℂ D exp)(exp‘𝑥))
93 vex 3467 . . . . . . . . . . . 12 𝑥 ∈ V
9493, 83breldm 5899 . . . . . . . . . . 11 (𝑥(ℂ D exp)(exp‘𝑥) → 𝑥 ∈ dom (ℂ D exp))
9592, 94syl 17 . . . . . . . . . 10 (𝑥 ∈ ℂ → 𝑥 ∈ dom (ℂ D exp))
9695ssriv 3967 . . . . . . . . 9 ℂ ⊆ dom (ℂ D exp)
972, 96eqssi 3980 . . . . . . . 8 dom (ℂ D exp) = ℂ
9897feq2i 6708 . . . . . . 7 ((ℂ D exp):dom (ℂ D exp)⟶ℂ ↔ (ℂ D exp):ℂ⟶ℂ)
991, 98mpbi 230 . . . . . 6 (ℂ D exp):ℂ⟶ℂ
10099a1i 11 . . . . 5 (⊤ → (ℂ D exp):ℂ⟶ℂ)
101100feqmptd 6957 . . . 4 (⊤ → (ℂ D exp) = (𝑥 ∈ ℂ ↦ ((ℂ D exp)‘𝑥)))
102 ffun 6719 . . . . . . 7 ((ℂ D exp):dom (ℂ D exp)⟶ℂ → Fun (ℂ D exp))
1031, 102ax-mp 5 . . . . . 6 Fun (ℂ D exp)
104 funbrfv 6937 . . . . . 6 (Fun (ℂ D exp) → (𝑥(ℂ D exp)(exp‘𝑥) → ((ℂ D exp)‘𝑥) = (exp‘𝑥)))
105103, 92, 104mpsyl 68 . . . . 5 (𝑥 ∈ ℂ → ((ℂ D exp)‘𝑥) = (exp‘𝑥))
106105mpteq2ia 5225 . . . 4 (𝑥 ∈ ℂ ↦ ((ℂ D exp)‘𝑥)) = (𝑥 ∈ ℂ ↦ (exp‘𝑥))
107101, 106eqtrdi 2785 . . 3 (⊤ → (ℂ D exp) = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
10819a1i 11 . . . 4 (⊤ → exp:ℂ⟶ℂ)
109108feqmptd 6957 . . 3 (⊤ → exp = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
110107, 109eqtr4d 2772 . 2 (⊤ → (ℂ D exp) = exp)
111110mptru 1546 1 (ℂ D exp) = exp
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wtru 1540  wcel 2107  Vcvv 3463  {csn 4606  {cpr 4608  cop 4612   class class class wbr 5123  cmpt 5205   × cxp 5663  dom cdm 5665  ccom 5669  Fun wfun 6535  wf 6537  cfv 6541  (class class class)co 7413  f cof 7677  cc 11135  cr 11136  0cc0 11137  1c1 11138   + caddc 11140   · cmul 11142  cmin 11474  expce 16080  TopOpenctopn 17438  fldccnfld 21327   D cdv 25835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-fi 9433  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-ico 13375  df-icc 13376  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-fac 14296  df-bc 14325  df-hash 14353  df-shft 15089  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-limsup 15490  df-clim 15507  df-rlim 15508  df-sum 15706  df-ef 16086  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-starv 17289  df-sca 17290  df-vsca 17291  df-ip 17292  df-tset 17293  df-ple 17294  df-ds 17296  df-unif 17297  df-hom 17298  df-cco 17299  df-rest 17439  df-topn 17440  df-0g 17458  df-gsum 17459  df-topgen 17460  df-pt 17461  df-prds 17464  df-xrs 17519  df-qtop 17524  df-imas 17525  df-xps 17527  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19769  df-psmet 21319  df-xmet 21320  df-met 21321  df-bl 21322  df-mopn 21323  df-fbas 21324  df-fg 21325  df-cnfld 21328  df-top 22849  df-topon 22866  df-topsp 22888  df-bases 22901  df-cld 22974  df-ntr 22975  df-cls 22976  df-nei 23053  df-lp 23091  df-perf 23092  df-cn 23182  df-cnp 23183  df-haus 23270  df-tx 23517  df-hmeo 23710  df-fil 23801  df-fm 23893  df-flim 23894  df-flf 23895  df-xms 24276  df-ms 24277  df-tms 24278  df-cncf 24841  df-limc 25838  df-dv 25839
This theorem is referenced by:  dvsincos  25956  efcn  26424  efcvx  26430  pige3ALT  26499  dvrelog  26616  dvlog  26630  dvcxp1  26719  dvcxp2  26720  dvcncxp1  26722  itgexpif  34596  dvsef  44323  expgrowthi  44324  expgrowth  44326
  Copyright terms: Public domain W3C validator