MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvef Structured version   Visualization version   GIF version

Theorem dvef 24295
Description: Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvef (ℂ D exp) = exp

Proof of Theorem dvef
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfcn 24224 . . . . . . 7 (ℂ D exp):dom (ℂ D exp)⟶ℂ
2 dvbsss 24218 . . . . . . . . 9 dom (ℂ D exp) ⊆ ℂ
3 subcl 10691 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑧𝑥) ∈ ℂ)
43ancoms 451 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧𝑥) ∈ ℂ)
5 efadd 15313 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ (𝑧𝑥) ∈ ℂ) → (exp‘(𝑥 + (𝑧𝑥))) = ((exp‘𝑥) · (exp‘(𝑧𝑥))))
64, 5syldan 583 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑥 + (𝑧𝑥))) = ((exp‘𝑥) · (exp‘(𝑧𝑥))))
7 pncan3 10700 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 + (𝑧𝑥)) = 𝑧)
87fveq2d 6508 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑥 + (𝑧𝑥))) = (exp‘𝑧))
96, 8eqtr3d 2818 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((exp‘𝑥) · (exp‘(𝑧𝑥))) = (exp‘𝑧))
109mpteq2dva 5027 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ ((exp‘𝑥) · (exp‘(𝑧𝑥)))) = (𝑧 ∈ ℂ ↦ (exp‘𝑧)))
11 cnex 10422 . . . . . . . . . . . . . . . 16 ℂ ∈ V
1211a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → ℂ ∈ V)
13 fvexd 6519 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘𝑥) ∈ V)
14 fvexd 6519 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑧𝑥)) ∈ V)
15 fconstmpt 5468 . . . . . . . . . . . . . . . 16 (ℂ × {(exp‘𝑥)}) = (𝑧 ∈ ℂ ↦ (exp‘𝑥))
1615a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (ℂ × {(exp‘𝑥)}) = (𝑧 ∈ ℂ ↦ (exp‘𝑥)))
17 eqidd 2781 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))
1812, 13, 14, 16, 17offval2 7250 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))) = (𝑧 ∈ ℂ ↦ ((exp‘𝑥) · (exp‘(𝑧𝑥)))))
19 eff 15301 . . . . . . . . . . . . . . . 16 exp:ℂ⟶ℂ
2019a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → exp:ℂ⟶ℂ)
2120feqmptd 6568 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → exp = (𝑧 ∈ ℂ ↦ (exp‘𝑧)))
2210, 18, 213eqtr4d 2826 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))) = exp)
2322oveq2d 6998 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (ℂ D ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))) = (ℂ D exp))
24 efcl 15302 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
25 fconstg 6400 . . . . . . . . . . . . . . . 16 ((exp‘𝑥) ∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶{(exp‘𝑥)})
2624, 25syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶{(exp‘𝑥)})
2724snssd 4621 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → {(exp‘𝑥)} ⊆ ℂ)
2826, 27fssd 6363 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶ℂ)
29 ssidd 3882 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → ℂ ⊆ ℂ)
30 efcl 15302 . . . . . . . . . . . . . . . 16 ((𝑧𝑥) ∈ ℂ → (exp‘(𝑧𝑥)) ∈ ℂ)
314, 30syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑧𝑥)) ∈ ℂ)
3231fmpttd 6708 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))):ℂ⟶ℂ)
33 0cnd 10438 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → 0 ∈ ℂ)
34 1cnd 10440 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → 1 ∈ ℂ)
35 c0ex 10439 . . . . . . . . . . . . . . . . . 18 0 ∈ V
3635snid 4478 . . . . . . . . . . . . . . . . 17 0 ∈ {0}
37 opelxpi 5448 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 0 ∈ {0}) → ⟨𝑥, 0⟩ ∈ (ℂ × {0}))
3836, 37mpan2 679 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → ⟨𝑥, 0⟩ ∈ (ℂ × {0}))
39 dvconst 24232 . . . . . . . . . . . . . . . . 17 ((exp‘𝑥) ∈ ℂ → (ℂ D (ℂ × {(exp‘𝑥)})) = (ℂ × {0}))
4024, 39syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (ℂ D (ℂ × {(exp‘𝑥)})) = (ℂ × {0}))
4138, 40eleqtrrd 2871 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → ⟨𝑥, 0⟩ ∈ (ℂ D (ℂ × {(exp‘𝑥)})))
42 df-br 4935 . . . . . . . . . . . . . . 15 (𝑥(ℂ D (ℂ × {(exp‘𝑥)}))0 ↔ ⟨𝑥, 0⟩ ∈ (ℂ D (ℂ × {(exp‘𝑥)})))
4341, 42sylibr 226 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → 𝑥(ℂ D (ℂ × {(exp‘𝑥)}))0)
4420, 4cofmpt 6723 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))
4544oveq2d 6998 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥)))) = (ℂ D (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))
464fmpttd 6708 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (𝑧𝑥)):ℂ⟶ℂ)
47 oveq1 6989 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑥 → (𝑧𝑥) = (𝑥𝑥))
48 eqid 2780 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ℂ ↦ (𝑧𝑥)) = (𝑧 ∈ ℂ ↦ (𝑧𝑥))
49 ovex 7014 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑥) ∈ V
5047, 48, 49fvmpt 6601 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) = (𝑥𝑥))
51 subid 10712 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → (𝑥𝑥) = 0)
5250, 51eqtrd 2816 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) = 0)
53 dveflem 24294 . . . . . . . . . . . . . . . . . 18 0(ℂ D exp)1
5452, 53syl6eqbr 4973 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥)(ℂ D exp)1)
55 1ex 10441 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ V
5655snid 4478 . . . . . . . . . . . . . . . . . . . 20 1 ∈ {1}
57 opelxpi 5448 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℂ ∧ 1 ∈ {1}) → ⟨𝑥, 1⟩ ∈ (ℂ × {1}))
5856, 57mpan2 679 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → ⟨𝑥, 1⟩ ∈ (ℂ × {1}))
59 cnelprrecn 10434 . . . . . . . . . . . . . . . . . . . . . 22 ℂ ∈ {ℝ, ℂ}
6059a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ → ℂ ∈ {ℝ, ℂ})
61 simpr 477 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
62 1cnd 10440 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 1 ∈ ℂ)
6360dvmptid 24272 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ 𝑧)) = (𝑧 ∈ ℂ ↦ 1))
64 simpl 475 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑥 ∈ ℂ)
65 0cnd 10438 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 0 ∈ ℂ)
66 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
6760, 66dvmptc 24273 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ 𝑥)) = (𝑧 ∈ ℂ ↦ 0))
6860, 61, 62, 63, 64, 65, 67dvmptsub 24282 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (1 − 0)))
69 1m0e1 11574 . . . . . . . . . . . . . . . . . . . . . 22 (1 − 0) = 1
7069mpteq2i 5024 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℂ ↦ (1 − 0)) = (𝑧 ∈ ℂ ↦ 1)
71 fconstmpt 5468 . . . . . . . . . . . . . . . . . . . . 21 (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1)
7270, 71eqtr4i 2807 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ℂ ↦ (1 − 0)) = (ℂ × {1})
7368, 72syl6eq 2832 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))) = (ℂ × {1}))
7458, 73eleqtrrd 2871 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → ⟨𝑥, 1⟩ ∈ (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))))
75 df-br 4935 . . . . . . . . . . . . . . . . . 18 (𝑥(ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥)))1 ↔ ⟨𝑥, 1⟩ ∈ (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))))
7674, 75sylibr 226 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → 𝑥(ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥)))1)
77 eqid 2780 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
7820, 29, 46, 29, 29, 29, 34, 34, 54, 76, 77dvcobr 24261 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → 𝑥(ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))))(1 · 1))
79 1t1e1 11615 . . . . . . . . . . . . . . . 16 (1 · 1) = 1
8078, 79syl6breq 4975 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → 𝑥(ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))))1)
8145, 80breqdi 4949 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → 𝑥(ℂ D (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))1)
8228, 29, 32, 29, 29, 33, 34, 43, 81, 77dvmulbr 24254 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → 𝑥(ℂ D ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) + (1 · ((ℂ × {(exp‘𝑥)})‘𝑥))))
8332, 66ffvelrnd 6683 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥) ∈ ℂ)
8483mul02d 10644 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) = 0)
85 fvex 6517 . . . . . . . . . . . . . . . . . 18 (exp‘𝑥) ∈ V
8685fvconst2 6799 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → ((ℂ × {(exp‘𝑥)})‘𝑥) = (exp‘𝑥))
8786oveq2d 6998 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (1 · ((ℂ × {(exp‘𝑥)})‘𝑥)) = (1 · (exp‘𝑥)))
8824mulid2d 10464 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (1 · (exp‘𝑥)) = (exp‘𝑥))
8987, 88eqtrd 2816 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (1 · ((ℂ × {(exp‘𝑥)})‘𝑥)) = (exp‘𝑥))
9084, 89oveq12d 7000 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → ((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) + (1 · ((ℂ × {(exp‘𝑥)})‘𝑥))) = (0 + (exp‘𝑥)))
9124addid2d 10647 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (0 + (exp‘𝑥)) = (exp‘𝑥))
9290, 91eqtrd 2816 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → ((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) + (1 · ((ℂ × {(exp‘𝑥)})‘𝑥))) = (exp‘𝑥))
9382, 92breqtrd 4960 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → 𝑥(ℂ D ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))(exp‘𝑥))
9423, 93breqdi 4949 . . . . . . . . . . 11 (𝑥 ∈ ℂ → 𝑥(ℂ D exp)(exp‘𝑥))
95 vex 3420 . . . . . . . . . . . 12 𝑥 ∈ V
9695, 85breldm 5631 . . . . . . . . . . 11 (𝑥(ℂ D exp)(exp‘𝑥) → 𝑥 ∈ dom (ℂ D exp))
9794, 96syl 17 . . . . . . . . . 10 (𝑥 ∈ ℂ → 𝑥 ∈ dom (ℂ D exp))
9897ssriv 3864 . . . . . . . . 9 ℂ ⊆ dom (ℂ D exp)
992, 98eqssi 3876 . . . . . . . 8 dom (ℂ D exp) = ℂ
10099feq2i 6341 . . . . . . 7 ((ℂ D exp):dom (ℂ D exp)⟶ℂ ↔ (ℂ D exp):ℂ⟶ℂ)
1011, 100mpbi 222 . . . . . 6 (ℂ D exp):ℂ⟶ℂ
102101a1i 11 . . . . 5 (⊤ → (ℂ D exp):ℂ⟶ℂ)
103102feqmptd 6568 . . . 4 (⊤ → (ℂ D exp) = (𝑥 ∈ ℂ ↦ ((ℂ D exp)‘𝑥)))
104 ffun 6352 . . . . . . 7 ((ℂ D exp):dom (ℂ D exp)⟶ℂ → Fun (ℂ D exp))
1051, 104ax-mp 5 . . . . . 6 Fun (ℂ D exp)
106 funbrfv 6551 . . . . . 6 (Fun (ℂ D exp) → (𝑥(ℂ D exp)(exp‘𝑥) → ((ℂ D exp)‘𝑥) = (exp‘𝑥)))
107105, 94, 106mpsyl 68 . . . . 5 (𝑥 ∈ ℂ → ((ℂ D exp)‘𝑥) = (exp‘𝑥))
108107mpteq2ia 5023 . . . 4 (𝑥 ∈ ℂ ↦ ((ℂ D exp)‘𝑥)) = (𝑥 ∈ ℂ ↦ (exp‘𝑥))
109103, 108syl6eq 2832 . . 3 (⊤ → (ℂ D exp) = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
11019a1i 11 . . . 4 (⊤ → exp:ℂ⟶ℂ)
111110feqmptd 6568 . . 3 (⊤ → exp = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
112109, 111eqtr4d 2819 . 2 (⊤ → (ℂ D exp) = exp)
113112mptru 1515 1 (ℂ D exp) = exp
Colors of variables: wff setvar class
Syntax hints:  wa 387   = wceq 1508  wtru 1509  wcel 2051  Vcvv 3417  {csn 4444  {cpr 4446  cop 4450   class class class wbr 4934  cmpt 5013   × cxp 5409  dom cdm 5411  ccom 5415  Fun wfun 6187  wf 6189  cfv 6193  (class class class)co 6982  𝑓 cof 7231  cc 10339  cr 10340  0cc0 10341  1c1 10342   + caddc 10344   · cmul 10346  cmin 10676  expce 15281  TopOpenctopn 16557  fldccnfld 20262   D cdv 24179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-inf2 8904  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418  ax-pre-sup 10419  ax-addf 10420  ax-mulf 10421
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-int 4755  df-iun 4799  df-iin 4800  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-se 5371  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-isom 6202  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-of 7233  df-om 7403  df-1st 7507  df-2nd 7508  df-supp 7640  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-1o 7911  df-2o 7912  df-oadd 7915  df-er 8095  df-map 8214  df-pm 8215  df-ixp 8266  df-en 8313  df-dom 8314  df-sdom 8315  df-fin 8316  df-fsupp 8635  df-fi 8676  df-sup 8707  df-inf 8708  df-oi 8775  df-card 9168  df-cda 9394  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-div 11105  df-nn 11446  df-2 11509  df-3 11510  df-4 11511  df-5 11512  df-6 11513  df-7 11514  df-8 11515  df-9 11516  df-n0 11714  df-z 11800  df-dec 11918  df-uz 12065  df-q 12169  df-rp 12211  df-xneg 12330  df-xadd 12331  df-xmul 12332  df-ico 12566  df-icc 12567  df-fz 12715  df-fzo 12856  df-fl 12983  df-seq 13191  df-exp 13251  df-fac 13455  df-bc 13484  df-hash 13512  df-shft 14293  df-cj 14325  df-re 14326  df-im 14327  df-sqrt 14461  df-abs 14462  df-limsup 14695  df-clim 14712  df-rlim 14713  df-sum 14910  df-ef 15287  df-struct 16347  df-ndx 16348  df-slot 16349  df-base 16351  df-sets 16352  df-ress 16353  df-plusg 16440  df-mulr 16441  df-starv 16442  df-sca 16443  df-vsca 16444  df-ip 16445  df-tset 16446  df-ple 16447  df-ds 16449  df-unif 16450  df-hom 16451  df-cco 16452  df-rest 16558  df-topn 16559  df-0g 16577  df-gsum 16578  df-topgen 16579  df-pt 16580  df-prds 16583  df-xrs 16637  df-qtop 16642  df-imas 16643  df-xps 16645  df-mre 16727  df-mrc 16728  df-acs 16730  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-submnd 17816  df-mulg 18024  df-cntz 18230  df-cmn 18680  df-psmet 20254  df-xmet 20255  df-met 20256  df-bl 20257  df-mopn 20258  df-fbas 20259  df-fg 20260  df-cnfld 20263  df-top 21221  df-topon 21238  df-topsp 21260  df-bases 21273  df-cld 21346  df-ntr 21347  df-cls 21348  df-nei 21425  df-lp 21463  df-perf 21464  df-cn 21554  df-cnp 21555  df-haus 21642  df-tx 21889  df-hmeo 22082  df-fil 22173  df-fm 22265  df-flim 22266  df-flf 22267  df-xms 22648  df-ms 22649  df-tms 22650  df-cncf 23204  df-limc 24182  df-dv 24183
This theorem is referenced by:  dvsincos  24296  efcn  24749  efcvx  24755  pige3ALT  24823  dvrelog  24936  dvlog  24950  dvcxp1  25037  dvcxp2  25038  dvcncxp1  25040  itgexpif  31557  dvsef  40121  expgrowthi  40122  expgrowth  40124
  Copyright terms: Public domain W3C validator