MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvef Structured version   Visualization version   GIF version

Theorem dvef 25941
Description: Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvef (ℂ D exp) = exp

Proof of Theorem dvef
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfcn 25866 . . . . . . 7 (ℂ D exp):dom (ℂ D exp)⟶ℂ
2 dvbsss 25860 . . . . . . . . 9 dom (ℂ D exp) ⊆ ℂ
3 subcl 11486 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑧𝑥) ∈ ℂ)
43ancoms 458 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧𝑥) ∈ ℂ)
5 efadd 16115 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ (𝑧𝑥) ∈ ℂ) → (exp‘(𝑥 + (𝑧𝑥))) = ((exp‘𝑥) · (exp‘(𝑧𝑥))))
64, 5syldan 591 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑥 + (𝑧𝑥))) = ((exp‘𝑥) · (exp‘(𝑧𝑥))))
7 pncan3 11495 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 + (𝑧𝑥)) = 𝑧)
87fveq2d 6885 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑥 + (𝑧𝑥))) = (exp‘𝑧))
96, 8eqtr3d 2773 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((exp‘𝑥) · (exp‘(𝑧𝑥))) = (exp‘𝑧))
109mpteq2dva 5219 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ ((exp‘𝑥) · (exp‘(𝑧𝑥)))) = (𝑧 ∈ ℂ ↦ (exp‘𝑧)))
11 cnex 11215 . . . . . . . . . . . . . . . 16 ℂ ∈ V
1211a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → ℂ ∈ V)
13 fvexd 6896 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘𝑥) ∈ V)
14 fvexd 6896 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑧𝑥)) ∈ V)
15 fconstmpt 5721 . . . . . . . . . . . . . . . 16 (ℂ × {(exp‘𝑥)}) = (𝑧 ∈ ℂ ↦ (exp‘𝑥))
1615a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (ℂ × {(exp‘𝑥)}) = (𝑧 ∈ ℂ ↦ (exp‘𝑥)))
17 eqidd 2737 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))
1812, 13, 14, 16, 17offval2 7696 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → ((ℂ × {(exp‘𝑥)}) ∘f · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))) = (𝑧 ∈ ℂ ↦ ((exp‘𝑥) · (exp‘(𝑧𝑥)))))
19 eff 16102 . . . . . . . . . . . . . . . 16 exp:ℂ⟶ℂ
2019a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → exp:ℂ⟶ℂ)
2120feqmptd 6952 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → exp = (𝑧 ∈ ℂ ↦ (exp‘𝑧)))
2210, 18, 213eqtr4d 2781 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → ((ℂ × {(exp‘𝑥)}) ∘f · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))) = exp)
2322oveq2d 7426 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (ℂ D ((ℂ × {(exp‘𝑥)}) ∘f · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))) = (ℂ D exp))
24 efcl 16103 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
25 fconstg 6770 . . . . . . . . . . . . . . . 16 ((exp‘𝑥) ∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶{(exp‘𝑥)})
2624, 25syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶{(exp‘𝑥)})
2724snssd 4790 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → {(exp‘𝑥)} ⊆ ℂ)
2826, 27fssd 6728 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶ℂ)
29 ssidd 3987 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → ℂ ⊆ ℂ)
30 efcl 16103 . . . . . . . . . . . . . . . 16 ((𝑧𝑥) ∈ ℂ → (exp‘(𝑧𝑥)) ∈ ℂ)
314, 30syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑧𝑥)) ∈ ℂ)
3231fmpttd 7110 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))):ℂ⟶ℂ)
33 c0ex 11234 . . . . . . . . . . . . . . . . . 18 0 ∈ V
3433snid 4643 . . . . . . . . . . . . . . . . 17 0 ∈ {0}
35 opelxpi 5696 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 0 ∈ {0}) → ⟨𝑥, 0⟩ ∈ (ℂ × {0}))
3634, 35mpan2 691 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → ⟨𝑥, 0⟩ ∈ (ℂ × {0}))
37 dvconst 25875 . . . . . . . . . . . . . . . . 17 ((exp‘𝑥) ∈ ℂ → (ℂ D (ℂ × {(exp‘𝑥)})) = (ℂ × {0}))
3824, 37syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (ℂ D (ℂ × {(exp‘𝑥)})) = (ℂ × {0}))
3936, 38eleqtrrd 2838 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → ⟨𝑥, 0⟩ ∈ (ℂ D (ℂ × {(exp‘𝑥)})))
40 df-br 5125 . . . . . . . . . . . . . . 15 (𝑥(ℂ D (ℂ × {(exp‘𝑥)}))0 ↔ ⟨𝑥, 0⟩ ∈ (ℂ D (ℂ × {(exp‘𝑥)})))
4139, 40sylibr 234 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → 𝑥(ℂ D (ℂ × {(exp‘𝑥)}))0)
4220, 4cofmpt 7127 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))
4342oveq2d 7426 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥)))) = (ℂ D (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))
444fmpttd 7110 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (𝑧𝑥)):ℂ⟶ℂ)
45 oveq1 7417 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑥 → (𝑧𝑥) = (𝑥𝑥))
46 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ℂ ↦ (𝑧𝑥)) = (𝑧 ∈ ℂ ↦ (𝑧𝑥))
47 ovex 7443 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑥) ∈ V
4845, 46, 47fvmpt 6991 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) = (𝑥𝑥))
49 subid 11507 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → (𝑥𝑥) = 0)
5048, 49eqtrd 2771 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) = 0)
51 dveflem 25940 . . . . . . . . . . . . . . . . . 18 0(ℂ D exp)1
5250, 51eqbrtrdi 5163 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥)(ℂ D exp)1)
53 1ex 11236 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ V
5453snid 4643 . . . . . . . . . . . . . . . . . . . 20 1 ∈ {1}
55 opelxpi 5696 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℂ ∧ 1 ∈ {1}) → ⟨𝑥, 1⟩ ∈ (ℂ × {1}))
5654, 55mpan2 691 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → ⟨𝑥, 1⟩ ∈ (ℂ × {1}))
57 cnelprrecn 11227 . . . . . . . . . . . . . . . . . . . . . 22 ℂ ∈ {ℝ, ℂ}
5857a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ → ℂ ∈ {ℝ, ℂ})
59 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
60 1cnd 11235 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 1 ∈ ℂ)
6158dvmptid 25918 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ 𝑧)) = (𝑧 ∈ ℂ ↦ 1))
62 simpl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑥 ∈ ℂ)
63 0cnd 11233 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 0 ∈ ℂ)
64 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
6558, 64dvmptc 25919 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ 𝑥)) = (𝑧 ∈ ℂ ↦ 0))
6658, 59, 60, 61, 62, 63, 65dvmptsub 25928 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (1 − 0)))
67 1m0e1 12366 . . . . . . . . . . . . . . . . . . . . . 22 (1 − 0) = 1
6867mpteq2i 5222 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℂ ↦ (1 − 0)) = (𝑧 ∈ ℂ ↦ 1)
69 fconstmpt 5721 . . . . . . . . . . . . . . . . . . . . 21 (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1)
7068, 69eqtr4i 2762 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ℂ ↦ (1 − 0)) = (ℂ × {1})
7166, 70eqtrdi 2787 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))) = (ℂ × {1}))
7256, 71eleqtrrd 2838 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → ⟨𝑥, 1⟩ ∈ (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))))
73 df-br 5125 . . . . . . . . . . . . . . . . . 18 (𝑥(ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥)))1 ↔ ⟨𝑥, 1⟩ ∈ (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))))
7472, 73sylibr 234 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → 𝑥(ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥)))1)
75 eqid 2736 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
7620, 29, 44, 29, 29, 29, 52, 74, 75dvcobr 25906 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → 𝑥(ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))))(1 · 1))
77 1t1e1 12407 . . . . . . . . . . . . . . . 16 (1 · 1) = 1
7876, 77breqtrdi 5165 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → 𝑥(ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))))1)
7943, 78breqdi 5139 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → 𝑥(ℂ D (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))1)
8028, 29, 32, 29, 29, 41, 79, 75dvmulbr 25898 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → 𝑥(ℂ D ((ℂ × {(exp‘𝑥)}) ∘f · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) + (1 · ((ℂ × {(exp‘𝑥)})‘𝑥))))
8132, 64ffvelcdmd 7080 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥) ∈ ℂ)
8281mul02d 11438 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) = 0)
83 fvex 6894 . . . . . . . . . . . . . . . . . 18 (exp‘𝑥) ∈ V
8483fvconst2 7201 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → ((ℂ × {(exp‘𝑥)})‘𝑥) = (exp‘𝑥))
8584oveq2d 7426 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (1 · ((ℂ × {(exp‘𝑥)})‘𝑥)) = (1 · (exp‘𝑥)))
8624mullidd 11258 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (1 · (exp‘𝑥)) = (exp‘𝑥))
8785, 86eqtrd 2771 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (1 · ((ℂ × {(exp‘𝑥)})‘𝑥)) = (exp‘𝑥))
8882, 87oveq12d 7428 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → ((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) + (1 · ((ℂ × {(exp‘𝑥)})‘𝑥))) = (0 + (exp‘𝑥)))
8924addlidd 11441 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (0 + (exp‘𝑥)) = (exp‘𝑥))
9088, 89eqtrd 2771 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → ((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) + (1 · ((ℂ × {(exp‘𝑥)})‘𝑥))) = (exp‘𝑥))
9180, 90breqtrd 5150 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → 𝑥(ℂ D ((ℂ × {(exp‘𝑥)}) ∘f · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))(exp‘𝑥))
9223, 91breqdi 5139 . . . . . . . . . . 11 (𝑥 ∈ ℂ → 𝑥(ℂ D exp)(exp‘𝑥))
93 vex 3468 . . . . . . . . . . . 12 𝑥 ∈ V
9493, 83breldm 5893 . . . . . . . . . . 11 (𝑥(ℂ D exp)(exp‘𝑥) → 𝑥 ∈ dom (ℂ D exp))
9592, 94syl 17 . . . . . . . . . 10 (𝑥 ∈ ℂ → 𝑥 ∈ dom (ℂ D exp))
9695ssriv 3967 . . . . . . . . 9 ℂ ⊆ dom (ℂ D exp)
972, 96eqssi 3980 . . . . . . . 8 dom (ℂ D exp) = ℂ
9897feq2i 6703 . . . . . . 7 ((ℂ D exp):dom (ℂ D exp)⟶ℂ ↔ (ℂ D exp):ℂ⟶ℂ)
991, 98mpbi 230 . . . . . 6 (ℂ D exp):ℂ⟶ℂ
10099a1i 11 . . . . 5 (⊤ → (ℂ D exp):ℂ⟶ℂ)
101100feqmptd 6952 . . . 4 (⊤ → (ℂ D exp) = (𝑥 ∈ ℂ ↦ ((ℂ D exp)‘𝑥)))
102 ffun 6714 . . . . . . 7 ((ℂ D exp):dom (ℂ D exp)⟶ℂ → Fun (ℂ D exp))
1031, 102ax-mp 5 . . . . . 6 Fun (ℂ D exp)
104 funbrfv 6932 . . . . . 6 (Fun (ℂ D exp) → (𝑥(ℂ D exp)(exp‘𝑥) → ((ℂ D exp)‘𝑥) = (exp‘𝑥)))
105103, 92, 104mpsyl 68 . . . . 5 (𝑥 ∈ ℂ → ((ℂ D exp)‘𝑥) = (exp‘𝑥))
106105mpteq2ia 5221 . . . 4 (𝑥 ∈ ℂ ↦ ((ℂ D exp)‘𝑥)) = (𝑥 ∈ ℂ ↦ (exp‘𝑥))
107101, 106eqtrdi 2787 . . 3 (⊤ → (ℂ D exp) = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
10819a1i 11 . . . 4 (⊤ → exp:ℂ⟶ℂ)
109108feqmptd 6952 . . 3 (⊤ → exp = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
110107, 109eqtr4d 2774 . 2 (⊤ → (ℂ D exp) = exp)
111110mptru 1547 1 (ℂ D exp) = exp
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wtru 1541  wcel 2109  Vcvv 3464  {csn 4606  {cpr 4608  cop 4612   class class class wbr 5124  cmpt 5206   × cxp 5657  dom cdm 5659  ccom 5663  Fun wfun 6530  wf 6532  cfv 6536  (class class class)co 7410  f cof 7674  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  cmin 11471  expce 16082  TopOpenctopn 17440  fldccnfld 21320   D cdv 25821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825
This theorem is referenced by:  dvsincos  25942  efcn  26410  efcvx  26416  pige3ALT  26486  dvrelog  26603  dvlog  26617  dvcxp1  26706  dvcxp2  26707  dvcncxp1  26709  itgexpif  34643  dvsef  44323  expgrowthi  44324  expgrowth  44326
  Copyright terms: Public domain W3C validator