Step | Hyp | Ref
| Expression |
1 | | dfcgra2.p |
. . . 4
⊢ 𝑃 = (Base‘𝐺) |
2 | | dfcgra2.i |
. . . 4
⊢ 𝐼 = (Itv‘𝐺) |
3 | | acopyeu.k |
. . . 4
⊢ 𝐾 = (hlG‘𝐺) |
4 | | acopyeu.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
5 | 4 | ad2antrr 725 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝑋 ∈ 𝑃) |
6 | 5 | ad3antrrr 729 |
. . . 4
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑋 ∈ 𝑃) |
7 | | simplr 768 |
. . . 4
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑦 ∈ 𝑃) |
8 | | acopyeu.y |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ 𝑃) |
9 | 8 | ad2antrr 725 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝑌 ∈ 𝑃) |
10 | 9 | ad3antrrr 729 |
. . . 4
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑌 ∈ 𝑃) |
11 | | dfcgra2.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
12 | 11 | ad2antrr 725 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝐺 ∈ TarskiG) |
13 | 12 | ad3antrrr 729 |
. . . 4
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝐺 ∈ TarskiG) |
14 | | dfcgra2.e |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ 𝑃) |
15 | 14 | ad2antrr 725 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝐸 ∈ 𝑃) |
16 | 15 | ad3antrrr 729 |
. . . 4
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝐸 ∈ 𝑃) |
17 | | dfcgra2.m |
. . . . . . 7
⊢ − =
(dist‘𝐺) |
18 | | acopy.l |
. . . . . . 7
⊢ 𝐿 = (LineG‘𝐺) |
19 | | dfcgra2.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
20 | 19 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝐴 ∈ 𝑃) |
21 | 20 | ad3antrrr 729 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝐴 ∈ 𝑃) |
22 | | dfcgra2.b |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
23 | 22 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝐵 ∈ 𝑃) |
24 | 23 | ad3antrrr 729 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝐵 ∈ 𝑃) |
25 | | dfcgra2.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
26 | 25 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝐶 ∈ 𝑃) |
27 | 26 | ad3antrrr 729 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝐶 ∈ 𝑃) |
28 | | simplr 768 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝑑 ∈ 𝑃) |
29 | 28 | ad3antrrr 729 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑑 ∈ 𝑃) |
30 | | dfcgra2.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ 𝑃) |
31 | 30 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝐹 ∈ 𝑃) |
32 | 31 | ad3antrrr 729 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝐹 ∈ 𝑃) |
33 | | acopy.1 |
. . . . . . . . 9
⊢ (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) |
34 | 33 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) |
35 | 34 | ad3antrrr 729 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) |
36 | | dfcgra2.d |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
37 | 36 | ad2antrr 725 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝐷 ∈ 𝑃) |
38 | | acopy.2 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹)) |
39 | 38 | ad2antrr 725 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹)) |
40 | | simprl 770 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝑑(𝐾‘𝐸)𝐷) |
41 | 1, 2, 3, 28, 37, 15, 12, 18, 40 | hlln 26500 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝑑 ∈ (𝐷𝐿𝐸)) |
42 | 1, 2, 3, 28, 37, 15, 12, 40 | hlne1 26498 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝑑 ≠ 𝐸) |
43 | 1, 2, 18, 12, 37, 15, 31, 28, 39, 41, 42 | ncolncol 26539 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → ¬ (𝑑 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹)) |
44 | 43 | ad3antrrr 729 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → ¬ (𝑑 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹)) |
45 | | simprr 772 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → (𝐸 − 𝑑) = (𝐵 − 𝐴)) |
46 | 1, 17, 2, 12, 15, 28, 23, 20, 45 | tgcgrcomlr 26373 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → (𝑑 − 𝐸) = (𝐴 − 𝐵)) |
47 | 46 | eqcomd 2764 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → (𝐴 − 𝐵) = (𝑑 − 𝐸)) |
48 | 47 | ad3antrrr 729 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → (𝐴 − 𝐵) = (𝑑 − 𝐸)) |
49 | | simpl 486 |
. . . . . . . . . . 11
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → 𝑢 = 𝑎) |
50 | 49 | eleq1d 2836 |
. . . . . . . . . 10
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (𝑢 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ↔ 𝑎 ∈ (𝑃 ∖ (𝑑𝐿𝐸)))) |
51 | | simpr 488 |
. . . . . . . . . . 11
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → 𝑣 = 𝑏) |
52 | 51 | eleq1d 2836 |
. . . . . . . . . 10
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (𝑣 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ↔ 𝑏 ∈ (𝑃 ∖ (𝑑𝐿𝐸)))) |
53 | 50, 52 | anbi12d 633 |
. . . . . . . . 9
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → ((𝑢 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ↔ (𝑎 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑑𝐿𝐸))))) |
54 | | simpr 488 |
. . . . . . . . . . 11
⊢ (((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → 𝑤 = 𝑡) |
55 | | simpll 766 |
. . . . . . . . . . . 12
⊢ (((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → 𝑢 = 𝑎) |
56 | | simplr 768 |
. . . . . . . . . . . 12
⊢ (((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → 𝑣 = 𝑏) |
57 | 55, 56 | oveq12d 7168 |
. . . . . . . . . . 11
⊢ (((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → (𝑢𝐼𝑣) = (𝑎𝐼𝑏)) |
58 | 54, 57 | eleq12d 2846 |
. . . . . . . . . 10
⊢ (((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → (𝑤 ∈ (𝑢𝐼𝑣) ↔ 𝑡 ∈ (𝑎𝐼𝑏))) |
59 | 58 | cbvrexdva 3372 |
. . . . . . . . 9
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (∃𝑤 ∈ (𝑑𝐿𝐸)𝑤 ∈ (𝑢𝐼𝑣) ↔ ∃𝑡 ∈ (𝑑𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))) |
60 | 53, 59 | anbi12d 633 |
. . . . . . . 8
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (((𝑢 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑤 ∈ (𝑑𝐿𝐸)𝑤 ∈ (𝑢𝐼𝑣)) ↔ ((𝑎 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑡 ∈ (𝑑𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏)))) |
61 | 60 | cbvopabv 5104 |
. . . . . . 7
⊢
{〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑤 ∈ (𝑑𝐿𝐸)𝑤 ∈ (𝑢𝐼𝑣))} = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑡 ∈ (𝑑𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))} |
62 | | simpllr 775 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑥 ∈ 𝑃) |
63 | | simprll 778 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉) |
64 | | simprrl 780 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉) |
65 | 1, 2, 18, 12, 28, 15, 42 | tgelrnln 26523 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → (𝑑𝐿𝐸) ∈ ran 𝐿) |
66 | 65 | ad3antrrr 729 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → (𝑑𝐿𝐸) ∈ ran 𝐿) |
67 | 1, 2, 18, 12, 28, 15, 42 | tglinerflx2 26527 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝐸 ∈ (𝑑𝐿𝐸)) |
68 | 67 | ad3antrrr 729 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝐸 ∈ (𝑑𝐿𝐸)) |
69 | 37 | ad3antrrr 729 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝐷 ∈ 𝑃) |
70 | | acopyeu.1 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑋”〉) |
71 | 1, 18, 2, 11, 22, 25, 19, 33 | ncolrot2 26456 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
72 | 1, 2, 17, 11, 19, 22, 25, 36, 14, 4, 70, 18, 71 | cgrancol 26722 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ¬ (𝑋 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) |
73 | 1, 18, 2, 11, 36, 14, 4, 72 | ncolcom 26454 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ¬ (𝑋 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷)) |
74 | 73 | ad5antr 733 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → ¬ (𝑋 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷)) |
75 | | simprlr 779 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑥(𝐾‘𝐸)𝑋) |
76 | 1, 2, 3, 62, 6, 16, 13, 18, 75 | hlln 26500 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑥 ∈ (𝑋𝐿𝐸)) |
77 | 1, 2, 3, 62, 6, 16, 13, 75 | hlne1 26498 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑥 ≠ 𝐸) |
78 | 1, 2, 18, 13, 6, 16, 69, 62, 74, 76, 77 | ncolncol 26539 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → ¬ (𝑥 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷)) |
79 | 1, 18, 2, 13, 16, 69, 62, 78 | ncolcom 26454 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → ¬ (𝑥 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) |
80 | | pm2.45 879 |
. . . . . . . . . . 11
⊢ (¬
(𝑥 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸) → ¬ 𝑥 ∈ (𝐷𝐿𝐸)) |
81 | 79, 80 | syl 17 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → ¬ 𝑥 ∈ (𝐷𝐿𝐸)) |
82 | 1, 2, 18, 11, 36, 14, 30, 38 | ncolne1 26518 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐷 ≠ 𝐸) |
83 | 1, 2, 18, 11, 36, 14, 82 | tgelrnln 26523 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐷𝐿𝐸) ∈ ran 𝐿) |
84 | 83 | ad2antrr 725 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → (𝐷𝐿𝐸) ∈ ran 𝐿) |
85 | 1, 2, 18, 11, 36, 14, 82 | tglinerflx2 26527 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐸 ∈ (𝐷𝐿𝐸)) |
86 | 85 | ad2antrr 725 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝐸 ∈ (𝐷𝐿𝐸)) |
87 | 1, 2, 18, 12, 28, 15, 42, 42, 84, 41, 86 | tglinethru 26529 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → (𝐷𝐿𝐸) = (𝑑𝐿𝐸)) |
88 | 87 | ad3antrrr 729 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → (𝐷𝐿𝐸) = (𝑑𝐿𝐸)) |
89 | 81, 88 | neleqtrd 2873 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → ¬ 𝑥 ∈ (𝑑𝐿𝐸)) |
90 | 1, 2, 18, 13, 66, 16, 61, 3, 68, 62, 6, 89, 75 | hphl 26664 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑥((hpG‘𝐺)‘(𝑑𝐿𝐸))𝑋) |
91 | 87 | fveq2d 6662 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → ((hpG‘𝐺)‘(𝐷𝐿𝐸)) = ((hpG‘𝐺)‘(𝑑𝐿𝐸))) |
92 | 91 | ad3antrrr 729 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → ((hpG‘𝐺)‘(𝐷𝐿𝐸)) = ((hpG‘𝐺)‘(𝑑𝐿𝐸))) |
93 | | acopyeu.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) |
94 | 93 | ad5antr 733 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) |
95 | 92, 94 | breqdi 5047 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑋((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) |
96 | 1, 2, 18, 13, 66, 62, 61, 6, 90, 32, 95 | hpgtr 26661 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑥((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) |
97 | | acopyeu.2 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑌”〉) |
98 | 1, 2, 17, 11, 19, 22, 25, 36, 14, 8, 97, 18, 71 | cgrancol 26722 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ¬ (𝑌 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) |
99 | 1, 18, 2, 11, 36, 14, 8, 98 | ncolcom 26454 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ¬ (𝑌 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷)) |
100 | 99 | ad5antr 733 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → ¬ (𝑌 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷)) |
101 | | simprrr 781 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑦(𝐾‘𝐸)𝑌) |
102 | 1, 2, 3, 7, 10, 16, 13, 18, 101 | hlln 26500 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑦 ∈ (𝑌𝐿𝐸)) |
103 | 1, 2, 3, 7, 10, 16, 13, 101 | hlne1 26498 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑦 ≠ 𝐸) |
104 | 1, 2, 18, 13, 10, 16, 69, 7, 100, 102, 103 | ncolncol 26539 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → ¬ (𝑦 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷)) |
105 | 1, 18, 2, 13, 16, 69, 7, 104 | ncolcom 26454 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → ¬ (𝑦 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) |
106 | | pm2.45 879 |
. . . . . . . . . . 11
⊢ (¬
(𝑦 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸) → ¬ 𝑦 ∈ (𝐷𝐿𝐸)) |
107 | 105, 106 | syl 17 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → ¬ 𝑦 ∈ (𝐷𝐿𝐸)) |
108 | 107, 88 | neleqtrd 2873 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → ¬ 𝑦 ∈ (𝑑𝐿𝐸)) |
109 | 1, 2, 18, 13, 66, 16, 61, 3, 68, 7, 10, 108, 101 | hphl 26664 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑦((hpG‘𝐺)‘(𝑑𝐿𝐸))𝑌) |
110 | | acopyeu.4 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) |
111 | 110 | ad5antr 733 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) |
112 | 92, 111 | breqdi 5047 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑌((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) |
113 | 1, 2, 18, 13, 66, 7, 61, 10, 109, 32, 112 | hpgtr 26661 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑦((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) |
114 | 1, 17, 2, 18, 3, 13, 21, 24, 27, 29, 16, 32, 35, 44, 48, 61, 62, 7, 63, 64, 96, 113 | trgcopyeulem 26698 |
. . . . . 6
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑥 = 𝑦) |
115 | 114, 75 | eqbrtrrd 5056 |
. . . . 5
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑦(𝐾‘𝐸)𝑋) |
116 | 1, 2, 3, 7, 6, 16,
13, 115 | hlcomd 26497 |
. . . 4
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑋(𝐾‘𝐸)𝑦) |
117 | 1, 2, 3, 6, 7, 10,
13, 16, 116, 101 | hltr 26503 |
. . 3
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑋(𝐾‘𝐸)𝑌) |
118 | 70 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑋”〉) |
119 | 1, 2, 3, 12, 20, 23, 26, 37, 15, 5, 118, 28, 40 | cgrahl1 26709 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝑑𝐸𝑋”〉) |
120 | 1, 2, 18, 11, 19, 22, 25, 33 | ncolne1 26518 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ≠ 𝐵) |
121 | 120 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝐴 ≠ 𝐵) |
122 | 1, 2, 3, 12, 20, 23, 26, 28, 15, 5, 17, 121, 47 | iscgra1 26703 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝑑𝐸𝑋”〉 ↔ ∃𝑥 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋))) |
123 | 119, 122 | mpbid 235 |
. . . 4
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → ∃𝑥 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋)) |
124 | 97 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑌”〉) |
125 | 1, 2, 3, 12, 20, 23, 26, 37, 15, 9, 124, 28, 40 | cgrahl1 26709 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝑑𝐸𝑌”〉) |
126 | 1, 2, 3, 12, 20, 23, 26, 28, 15, 9, 17, 121, 47 | iscgra1 26703 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝑑𝐸𝑌”〉 ↔ ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) |
127 | 125, 126 | mpbid 235 |
. . . 4
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌)) |
128 | | reeanv 3285 |
. . . 4
⊢
(∃𝑥 ∈
𝑃 ∃𝑦 ∈ 𝑃 ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌)) ↔ (∃𝑥 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) |
129 | 123, 127,
128 | sylanbrc 586 |
. . 3
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) |
130 | 117, 129 | r19.29vva 3257 |
. 2
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝑋(𝐾‘𝐸)𝑌) |
131 | 120 | necomd 3006 |
. . 3
⊢ (𝜑 → 𝐵 ≠ 𝐴) |
132 | 1, 2, 3, 14, 22, 19, 11, 36, 17, 82, 131 | hlcgrex 26509 |
. 2
⊢ (𝜑 → ∃𝑑 ∈ 𝑃 (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) |
133 | 130, 132 | r19.29a 3213 |
1
⊢ (𝜑 → 𝑋(𝐾‘𝐸)𝑌) |