MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acopyeu Structured version   Visualization version   GIF version

Theorem acopyeu 28860
Description: Angle construction. Theorem 11.15 of [Schwabhauser] p. 98. This is Hilbert's axiom III.4 for geometry. Akin to a uniqueness theorem, this states that if two points 𝑋 and 𝑌 both fulfill the conditions, then they are on the same half-line. (Contributed by Thierry Arnoux, 9-Aug-2020.)
Hypotheses
Ref Expression
dfcgra2.p 𝑃 = (Base‘𝐺)
dfcgra2.i 𝐼 = (Itv‘𝐺)
dfcgra2.m = (dist‘𝐺)
dfcgra2.g (𝜑𝐺 ∈ TarskiG)
dfcgra2.a (𝜑𝐴𝑃)
dfcgra2.b (𝜑𝐵𝑃)
dfcgra2.c (𝜑𝐶𝑃)
dfcgra2.d (𝜑𝐷𝑃)
dfcgra2.e (𝜑𝐸𝑃)
dfcgra2.f (𝜑𝐹𝑃)
acopy.l 𝐿 = (LineG‘𝐺)
acopy.1 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
acopy.2 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
acopyeu.x (𝜑𝑋𝑃)
acopyeu.y (𝜑𝑌𝑃)
acopyeu.k 𝐾 = (hlG‘𝐺)
acopyeu.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑋”⟩)
acopyeu.2 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑌”⟩)
acopyeu.3 (𝜑𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
acopyeu.4 (𝜑𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
Assertion
Ref Expression
acopyeu (𝜑𝑋(𝐾𝐸)𝑌)

Proof of Theorem acopyeu
Dummy variables 𝑎 𝑑 𝑡 𝑥 𝑦 𝑏 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcgra2.p . . . 4 𝑃 = (Base‘𝐺)
2 dfcgra2.i . . . 4 𝐼 = (Itv‘𝐺)
3 acopyeu.k . . . 4 𝐾 = (hlG‘𝐺)
4 acopyeu.x . . . . . 6 (𝜑𝑋𝑃)
54ad2antrr 725 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑋𝑃)
65ad3antrrr 729 . . . 4 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑋𝑃)
7 simplr 768 . . . 4 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦𝑃)
8 acopyeu.y . . . . . 6 (𝜑𝑌𝑃)
98ad2antrr 725 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑌𝑃)
109ad3antrrr 729 . . . 4 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑌𝑃)
11 dfcgra2.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
1211ad2antrr 725 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐺 ∈ TarskiG)
1312ad3antrrr 729 . . . 4 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐺 ∈ TarskiG)
14 dfcgra2.e . . . . . 6 (𝜑𝐸𝑃)
1514ad2antrr 725 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐸𝑃)
1615ad3antrrr 729 . . . 4 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐸𝑃)
17 dfcgra2.m . . . . . . 7 = (dist‘𝐺)
18 acopy.l . . . . . . 7 𝐿 = (LineG‘𝐺)
19 dfcgra2.a . . . . . . . . 9 (𝜑𝐴𝑃)
2019ad2antrr 725 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐴𝑃)
2120ad3antrrr 729 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐴𝑃)
22 dfcgra2.b . . . . . . . . 9 (𝜑𝐵𝑃)
2322ad2antrr 725 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐵𝑃)
2423ad3antrrr 729 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐵𝑃)
25 dfcgra2.c . . . . . . . . 9 (𝜑𝐶𝑃)
2625ad2antrr 725 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐶𝑃)
2726ad3antrrr 729 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐶𝑃)
28 simplr 768 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑑𝑃)
2928ad3antrrr 729 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑑𝑃)
30 dfcgra2.f . . . . . . . . 9 (𝜑𝐹𝑃)
3130ad2antrr 725 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐹𝑃)
3231ad3antrrr 729 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐹𝑃)
33 acopy.1 . . . . . . . . 9 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
3433ad2antrr 725 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
3534ad3antrrr 729 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
36 dfcgra2.d . . . . . . . . . 10 (𝜑𝐷𝑃)
3736ad2antrr 725 . . . . . . . . 9 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐷𝑃)
38 acopy.2 . . . . . . . . . 10 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
3938ad2antrr 725 . . . . . . . . 9 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
40 simprl 770 . . . . . . . . . 10 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑑(𝐾𝐸)𝐷)
411, 2, 3, 28, 37, 15, 12, 18, 40hlln 28633 . . . . . . . . 9 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑑 ∈ (𝐷𝐿𝐸))
421, 2, 3, 28, 37, 15, 12, 40hlne1 28631 . . . . . . . . 9 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑑𝐸)
431, 2, 18, 12, 37, 15, 31, 28, 39, 41, 42ncolncol 28672 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ¬ (𝑑 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
4443ad3antrrr 729 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑑 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
45 simprr 772 . . . . . . . . . 10 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝐸 𝑑) = (𝐵 𝐴))
461, 17, 2, 12, 15, 28, 23, 20, 45tgcgrcomlr 28506 . . . . . . . . 9 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝑑 𝐸) = (𝐴 𝐵))
4746eqcomd 2746 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝐴 𝐵) = (𝑑 𝐸))
4847ad3antrrr 729 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → (𝐴 𝐵) = (𝑑 𝐸))
49 simpl 482 . . . . . . . . . . 11 ((𝑢 = 𝑎𝑣 = 𝑏) → 𝑢 = 𝑎)
5049eleq1d 2829 . . . . . . . . . 10 ((𝑢 = 𝑎𝑣 = 𝑏) → (𝑢 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ↔ 𝑎 ∈ (𝑃 ∖ (𝑑𝐿𝐸))))
51 simpr 484 . . . . . . . . . . 11 ((𝑢 = 𝑎𝑣 = 𝑏) → 𝑣 = 𝑏)
5251eleq1d 2829 . . . . . . . . . 10 ((𝑢 = 𝑎𝑣 = 𝑏) → (𝑣 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ↔ 𝑏 ∈ (𝑃 ∖ (𝑑𝐿𝐸))))
5350, 52anbi12d 631 . . . . . . . . 9 ((𝑢 = 𝑎𝑣 = 𝑏) → ((𝑢 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ↔ (𝑎 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑑𝐿𝐸)))))
54 simpr 484 . . . . . . . . . . 11 (((𝑢 = 𝑎𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → 𝑤 = 𝑡)
55 simpll 766 . . . . . . . . . . . 12 (((𝑢 = 𝑎𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → 𝑢 = 𝑎)
56 simplr 768 . . . . . . . . . . . 12 (((𝑢 = 𝑎𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → 𝑣 = 𝑏)
5755, 56oveq12d 7466 . . . . . . . . . . 11 (((𝑢 = 𝑎𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → (𝑢𝐼𝑣) = (𝑎𝐼𝑏))
5854, 57eleq12d 2838 . . . . . . . . . 10 (((𝑢 = 𝑎𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → (𝑤 ∈ (𝑢𝐼𝑣) ↔ 𝑡 ∈ (𝑎𝐼𝑏)))
5958cbvrexdva 3246 . . . . . . . . 9 ((𝑢 = 𝑎𝑣 = 𝑏) → (∃𝑤 ∈ (𝑑𝐿𝐸)𝑤 ∈ (𝑢𝐼𝑣) ↔ ∃𝑡 ∈ (𝑑𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏)))
6053, 59anbi12d 631 . . . . . . . 8 ((𝑢 = 𝑎𝑣 = 𝑏) → (((𝑢 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑤 ∈ (𝑑𝐿𝐸)𝑤 ∈ (𝑢𝐼𝑣)) ↔ ((𝑎 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑡 ∈ (𝑑𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))))
6160cbvopabv 5239 . . . . . . 7 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑤 ∈ (𝑑𝐿𝐸)𝑤 ∈ (𝑢𝐼𝑣))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑡 ∈ (𝑑𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))}
62 simpllr 775 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥𝑃)
63 simprll 778 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩)
64 simprrl 780 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩)
651, 2, 18, 12, 28, 15, 42tgelrnln 28656 . . . . . . . . 9 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝑑𝐿𝐸) ∈ ran 𝐿)
6665ad3antrrr 729 . . . . . . . 8 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → (𝑑𝐿𝐸) ∈ ran 𝐿)
671, 2, 18, 12, 28, 15, 42tglinerflx2 28660 . . . . . . . . . 10 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐸 ∈ (𝑑𝐿𝐸))
6867ad3antrrr 729 . . . . . . . . 9 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐸 ∈ (𝑑𝐿𝐸))
6937ad3antrrr 729 . . . . . . . . . . . 12 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐷𝑃)
70 acopyeu.1 . . . . . . . . . . . . . . . 16 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑋”⟩)
711, 18, 2, 11, 22, 25, 19, 33ncolrot2 28589 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
721, 2, 17, 11, 19, 22, 25, 36, 14, 4, 70, 18, 71cgrancol 28855 . . . . . . . . . . . . . . 15 (𝜑 → ¬ (𝑋 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
731, 18, 2, 11, 36, 14, 4, 72ncolcom 28587 . . . . . . . . . . . . . 14 (𝜑 → ¬ (𝑋 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
7473ad5antr 733 . . . . . . . . . . . . 13 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑋 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
75 simprlr 779 . . . . . . . . . . . . . 14 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥(𝐾𝐸)𝑋)
761, 2, 3, 62, 6, 16, 13, 18, 75hlln 28633 . . . . . . . . . . . . 13 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥 ∈ (𝑋𝐿𝐸))
771, 2, 3, 62, 6, 16, 13, 75hlne1 28631 . . . . . . . . . . . . 13 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥𝐸)
781, 2, 18, 13, 6, 16, 69, 62, 74, 76, 77ncolncol 28672 . . . . . . . . . . . 12 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑥 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
791, 18, 2, 13, 16, 69, 62, 78ncolcom 28587 . . . . . . . . . . 11 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑥 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
80 pm2.45 880 . . . . . . . . . . 11 (¬ (𝑥 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸) → ¬ 𝑥 ∈ (𝐷𝐿𝐸))
8179, 80syl 17 . . . . . . . . . 10 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ 𝑥 ∈ (𝐷𝐿𝐸))
821, 2, 18, 11, 36, 14, 30, 38ncolne1 28651 . . . . . . . . . . . . . 14 (𝜑𝐷𝐸)
831, 2, 18, 11, 36, 14, 82tgelrnln 28656 . . . . . . . . . . . . 13 (𝜑 → (𝐷𝐿𝐸) ∈ ran 𝐿)
8483ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝐷𝐿𝐸) ∈ ran 𝐿)
851, 2, 18, 11, 36, 14, 82tglinerflx2 28660 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ (𝐷𝐿𝐸))
8685ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐸 ∈ (𝐷𝐿𝐸))
871, 2, 18, 12, 28, 15, 42, 42, 84, 41, 86tglinethru 28662 . . . . . . . . . . 11 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝐷𝐿𝐸) = (𝑑𝐿𝐸))
8887ad3antrrr 729 . . . . . . . . . 10 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → (𝐷𝐿𝐸) = (𝑑𝐿𝐸))
8981, 88neleqtrd 2866 . . . . . . . . 9 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ 𝑥 ∈ (𝑑𝐿𝐸))
901, 2, 18, 13, 66, 16, 61, 3, 68, 62, 6, 89, 75hphl 28797 . . . . . . . 8 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥((hpG‘𝐺)‘(𝑑𝐿𝐸))𝑋)
9187fveq2d 6924 . . . . . . . . . 10 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ((hpG‘𝐺)‘(𝐷𝐿𝐸)) = ((hpG‘𝐺)‘(𝑑𝐿𝐸)))
9291ad3antrrr 729 . . . . . . . . 9 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ((hpG‘𝐺)‘(𝐷𝐿𝐸)) = ((hpG‘𝐺)‘(𝑑𝐿𝐸)))
93 acopyeu.3 . . . . . . . . . 10 (𝜑𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
9493ad5antr 733 . . . . . . . . 9 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
9592, 94breqdi 5181 . . . . . . . 8 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑋((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹)
961, 2, 18, 13, 66, 62, 61, 6, 90, 32, 95hpgtr 28794 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹)
97 acopyeu.2 . . . . . . . . . . . . . . . 16 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑌”⟩)
981, 2, 17, 11, 19, 22, 25, 36, 14, 8, 97, 18, 71cgrancol 28855 . . . . . . . . . . . . . . 15 (𝜑 → ¬ (𝑌 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
991, 18, 2, 11, 36, 14, 8, 98ncolcom 28587 . . . . . . . . . . . . . 14 (𝜑 → ¬ (𝑌 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
10099ad5antr 733 . . . . . . . . . . . . 13 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑌 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
101 simprrr 781 . . . . . . . . . . . . . 14 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦(𝐾𝐸)𝑌)
1021, 2, 3, 7, 10, 16, 13, 18, 101hlln 28633 . . . . . . . . . . . . 13 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦 ∈ (𝑌𝐿𝐸))
1031, 2, 3, 7, 10, 16, 13, 101hlne1 28631 . . . . . . . . . . . . 13 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦𝐸)
1041, 2, 18, 13, 10, 16, 69, 7, 100, 102, 103ncolncol 28672 . . . . . . . . . . . 12 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑦 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
1051, 18, 2, 13, 16, 69, 7, 104ncolcom 28587 . . . . . . . . . . 11 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑦 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
106 pm2.45 880 . . . . . . . . . . 11 (¬ (𝑦 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸) → ¬ 𝑦 ∈ (𝐷𝐿𝐸))
107105, 106syl 17 . . . . . . . . . 10 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ 𝑦 ∈ (𝐷𝐿𝐸))
108107, 88neleqtrd 2866 . . . . . . . . 9 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ 𝑦 ∈ (𝑑𝐿𝐸))
1091, 2, 18, 13, 66, 16, 61, 3, 68, 7, 10, 108, 101hphl 28797 . . . . . . . 8 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦((hpG‘𝐺)‘(𝑑𝐿𝐸))𝑌)
110 acopyeu.4 . . . . . . . . . 10 (𝜑𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
111110ad5antr 733 . . . . . . . . 9 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
11292, 111breqdi 5181 . . . . . . . 8 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑌((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹)
1131, 2, 18, 13, 66, 7, 61, 10, 109, 32, 112hpgtr 28794 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹)
1141, 17, 2, 18, 3, 13, 21, 24, 27, 29, 16, 32, 35, 44, 48, 61, 62, 7, 63, 64, 96, 113trgcopyeulem 28831 . . . . . 6 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥 = 𝑦)
115114, 75eqbrtrrd 5190 . . . . 5 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦(𝐾𝐸)𝑋)
1161, 2, 3, 7, 6, 16, 13, 115hlcomd 28630 . . . 4 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑋(𝐾𝐸)𝑦)
1171, 2, 3, 6, 7, 10, 13, 16, 116, 101hltr 28636 . . 3 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑋(𝐾𝐸)𝑌)
11870ad2antrr 725 . . . . . 6 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑋”⟩)
1191, 2, 3, 12, 20, 23, 26, 37, 15, 5, 118, 28, 40cgrahl1 28842 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝑋”⟩)
1201, 2, 18, 11, 19, 22, 25, 33ncolne1 28651 . . . . . . 7 (𝜑𝐴𝐵)
121120ad2antrr 725 . . . . . 6 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐴𝐵)
1221, 2, 3, 12, 20, 23, 26, 28, 15, 5, 17, 121, 47iscgra1 28836 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝑋”⟩ ↔ ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋)))
123119, 122mpbid 232 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋))
12497ad2antrr 725 . . . . . 6 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑌”⟩)
1251, 2, 3, 12, 20, 23, 26, 37, 15, 9, 124, 28, 40cgrahl1 28842 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝑌”⟩)
1261, 2, 3, 12, 20, 23, 26, 28, 15, 9, 17, 121, 47iscgra1 28836 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝑌”⟩ ↔ ∃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌)))
127125, 126mpbid 232 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ∃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))
128 reeanv 3235 . . . 4 (∃𝑥𝑃𝑦𝑃 ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌)) ↔ (∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ ∃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌)))
129123, 127, 128sylanbrc 582 . . 3 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ∃𝑥𝑃𝑦𝑃 ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌)))
130117, 129r19.29vva 3222 . 2 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑋(𝐾𝐸)𝑌)
131120necomd 3002 . . 3 (𝜑𝐵𝐴)
1321, 2, 3, 14, 22, 19, 11, 36, 17, 82, 131hlcgrex 28642 . 2 (𝜑 → ∃𝑑𝑃 (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴)))
133130, 132r19.29a 3168 1 (𝜑𝑋(𝐾𝐸)𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wrex 3076  cdif 3973   class class class wbr 5166  {copab 5228  ran crn 5701  cfv 6573  (class class class)co 7448  ⟨“cs3 14891  Basecbs 17258  distcds 17320  TarskiGcstrkg 28453  Itvcitv 28459  LineGclng 28460  cgrGccgrg 28536  hlGchlg 28626  hpGchpg 28783  cgrAccgra 28833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-s3 14898  df-trkgc 28474  df-trkgb 28475  df-trkgcb 28476  df-trkgld 28478  df-trkg 28479  df-cgrg 28537  df-leg 28609  df-hlg 28627  df-mir 28679  df-rag 28720  df-perpg 28722  df-hpg 28784  df-mid 28800  df-lmi 28801  df-cgra 28834
This theorem is referenced by:  tgasa1  28884
  Copyright terms: Public domain W3C validator