MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acopyeu Structured version   Visualization version   GIF version

Theorem acopyeu 26339
Description: Angle construction. Theorem 11.15 of [Schwabhauser] p. 98. This is Hilbert's axiom III.4 for geometry. Akin to a uniqueness theorem, this states that if two points 𝑋 and 𝑌 both fulfill the conditions, then they are on the same half-line. (Contributed by Thierry Arnoux, 9-Aug-2020.)
Hypotheses
Ref Expression
dfcgra2.p 𝑃 = (Base‘𝐺)
dfcgra2.i 𝐼 = (Itv‘𝐺)
dfcgra2.m = (dist‘𝐺)
dfcgra2.g (𝜑𝐺 ∈ TarskiG)
dfcgra2.a (𝜑𝐴𝑃)
dfcgra2.b (𝜑𝐵𝑃)
dfcgra2.c (𝜑𝐶𝑃)
dfcgra2.d (𝜑𝐷𝑃)
dfcgra2.e (𝜑𝐸𝑃)
dfcgra2.f (𝜑𝐹𝑃)
acopy.l 𝐿 = (LineG‘𝐺)
acopy.1 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
acopy.2 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
acopyeu.x (𝜑𝑋𝑃)
acopyeu.y (𝜑𝑌𝑃)
acopyeu.k 𝐾 = (hlG‘𝐺)
acopyeu.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑋”⟩)
acopyeu.2 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑌”⟩)
acopyeu.3 (𝜑𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
acopyeu.4 (𝜑𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
Assertion
Ref Expression
acopyeu (𝜑𝑋(𝐾𝐸)𝑌)

Proof of Theorem acopyeu
Dummy variables 𝑎 𝑑 𝑡 𝑥 𝑦 𝑏 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcgra2.p . . . 4 𝑃 = (Base‘𝐺)
2 dfcgra2.i . . . 4 𝐼 = (Itv‘𝐺)
3 acopyeu.k . . . 4 𝐾 = (hlG‘𝐺)
4 acopyeu.x . . . . . 6 (𝜑𝑋𝑃)
54ad2antrr 714 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑋𝑃)
65ad3antrrr 718 . . . 4 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑋𝑃)
7 simplr 757 . . . 4 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦𝑃)
8 acopyeu.y . . . . . 6 (𝜑𝑌𝑃)
98ad2antrr 714 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑌𝑃)
109ad3antrrr 718 . . . 4 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑌𝑃)
11 dfcgra2.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
1211ad2antrr 714 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐺 ∈ TarskiG)
1312ad3antrrr 718 . . . 4 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐺 ∈ TarskiG)
14 dfcgra2.e . . . . . 6 (𝜑𝐸𝑃)
1514ad2antrr 714 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐸𝑃)
1615ad3antrrr 718 . . . 4 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐸𝑃)
17 dfcgra2.m . . . . . . 7 = (dist‘𝐺)
18 acopy.l . . . . . . 7 𝐿 = (LineG‘𝐺)
19 dfcgra2.a . . . . . . . . 9 (𝜑𝐴𝑃)
2019ad2antrr 714 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐴𝑃)
2120ad3antrrr 718 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐴𝑃)
22 dfcgra2.b . . . . . . . . 9 (𝜑𝐵𝑃)
2322ad2antrr 714 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐵𝑃)
2423ad3antrrr 718 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐵𝑃)
25 dfcgra2.c . . . . . . . . 9 (𝜑𝐶𝑃)
2625ad2antrr 714 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐶𝑃)
2726ad3antrrr 718 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐶𝑃)
28 simplr 757 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑑𝑃)
2928ad3antrrr 718 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑑𝑃)
30 dfcgra2.f . . . . . . . . 9 (𝜑𝐹𝑃)
3130ad2antrr 714 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐹𝑃)
3231ad3antrrr 718 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐹𝑃)
33 acopy.1 . . . . . . . . 9 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
3433ad2antrr 714 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
3534ad3antrrr 718 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
36 dfcgra2.d . . . . . . . . . 10 (𝜑𝐷𝑃)
3736ad2antrr 714 . . . . . . . . 9 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐷𝑃)
38 acopy.2 . . . . . . . . . 10 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
3938ad2antrr 714 . . . . . . . . 9 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
40 simprl 759 . . . . . . . . . 10 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑑(𝐾𝐸)𝐷)
411, 2, 3, 28, 37, 15, 12, 18, 40hlln 26111 . . . . . . . . 9 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑑 ∈ (𝐷𝐿𝐸))
421, 2, 3, 28, 37, 15, 12, 40hlne1 26109 . . . . . . . . 9 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑑𝐸)
431, 2, 18, 12, 37, 15, 31, 28, 39, 41, 42ncolncol 26150 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ¬ (𝑑 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
4443ad3antrrr 718 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑑 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
45 simprr 761 . . . . . . . . . 10 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝐸 𝑑) = (𝐵 𝐴))
461, 17, 2, 12, 15, 28, 23, 20, 45tgcgrcomlr 25984 . . . . . . . . 9 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝑑 𝐸) = (𝐴 𝐵))
4746eqcomd 2779 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝐴 𝐵) = (𝑑 𝐸))
4847ad3antrrr 718 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → (𝐴 𝐵) = (𝑑 𝐸))
49 simpl 475 . . . . . . . . . . 11 ((𝑢 = 𝑎𝑣 = 𝑏) → 𝑢 = 𝑎)
5049eleq1d 2845 . . . . . . . . . 10 ((𝑢 = 𝑎𝑣 = 𝑏) → (𝑢 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ↔ 𝑎 ∈ (𝑃 ∖ (𝑑𝐿𝐸))))
51 simpr 477 . . . . . . . . . . 11 ((𝑢 = 𝑎𝑣 = 𝑏) → 𝑣 = 𝑏)
5251eleq1d 2845 . . . . . . . . . 10 ((𝑢 = 𝑎𝑣 = 𝑏) → (𝑣 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ↔ 𝑏 ∈ (𝑃 ∖ (𝑑𝐿𝐸))))
5350, 52anbi12d 622 . . . . . . . . 9 ((𝑢 = 𝑎𝑣 = 𝑏) → ((𝑢 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ↔ (𝑎 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑑𝐿𝐸)))))
54 simpr 477 . . . . . . . . . . 11 (((𝑢 = 𝑎𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → 𝑤 = 𝑡)
55 simpll 755 . . . . . . . . . . . 12 (((𝑢 = 𝑎𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → 𝑢 = 𝑎)
56 simplr 757 . . . . . . . . . . . 12 (((𝑢 = 𝑎𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → 𝑣 = 𝑏)
5755, 56oveq12d 6993 . . . . . . . . . . 11 (((𝑢 = 𝑎𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → (𝑢𝐼𝑣) = (𝑎𝐼𝑏))
5854, 57eleq12d 2855 . . . . . . . . . 10 (((𝑢 = 𝑎𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → (𝑤 ∈ (𝑢𝐼𝑣) ↔ 𝑡 ∈ (𝑎𝐼𝑏)))
5958cbvrexdva 3386 . . . . . . . . 9 ((𝑢 = 𝑎𝑣 = 𝑏) → (∃𝑤 ∈ (𝑑𝐿𝐸)𝑤 ∈ (𝑢𝐼𝑣) ↔ ∃𝑡 ∈ (𝑑𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏)))
6053, 59anbi12d 622 . . . . . . . 8 ((𝑢 = 𝑎𝑣 = 𝑏) → (((𝑢 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑤 ∈ (𝑑𝐿𝐸)𝑤 ∈ (𝑢𝐼𝑣)) ↔ ((𝑎 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑡 ∈ (𝑑𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))))
6160cbvopabv 4998 . . . . . . 7 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑤 ∈ (𝑑𝐿𝐸)𝑤 ∈ (𝑢𝐼𝑣))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑡 ∈ (𝑑𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))}
62 simpllr 764 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥𝑃)
63 simprll 767 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩)
64 simprrl 769 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩)
651, 2, 18, 12, 28, 15, 42tgelrnln 26134 . . . . . . . . 9 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝑑𝐿𝐸) ∈ ran 𝐿)
6665ad3antrrr 718 . . . . . . . 8 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → (𝑑𝐿𝐸) ∈ ran 𝐿)
671, 2, 18, 12, 28, 15, 42tglinerflx2 26138 . . . . . . . . . 10 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐸 ∈ (𝑑𝐿𝐸))
6867ad3antrrr 718 . . . . . . . . 9 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐸 ∈ (𝑑𝐿𝐸))
6937ad3antrrr 718 . . . . . . . . . . . 12 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐷𝑃)
70 acopyeu.1 . . . . . . . . . . . . . . . 16 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑋”⟩)
711, 18, 2, 11, 22, 25, 19, 33ncolrot2 26067 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
721, 2, 17, 11, 19, 22, 25, 36, 14, 4, 70, 18, 71cgrancol 26333 . . . . . . . . . . . . . . 15 (𝜑 → ¬ (𝑋 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
731, 18, 2, 11, 36, 14, 4, 72ncolcom 26065 . . . . . . . . . . . . . 14 (𝜑 → ¬ (𝑋 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
7473ad5antr 722 . . . . . . . . . . . . 13 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑋 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
75 simprlr 768 . . . . . . . . . . . . . 14 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥(𝐾𝐸)𝑋)
761, 2, 3, 62, 6, 16, 13, 18, 75hlln 26111 . . . . . . . . . . . . 13 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥 ∈ (𝑋𝐿𝐸))
771, 2, 3, 62, 6, 16, 13, 75hlne1 26109 . . . . . . . . . . . . 13 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥𝐸)
781, 2, 18, 13, 6, 16, 69, 62, 74, 76, 77ncolncol 26150 . . . . . . . . . . . 12 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑥 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
791, 18, 2, 13, 16, 69, 62, 78ncolcom 26065 . . . . . . . . . . 11 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑥 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
80 pm2.45 866 . . . . . . . . . . 11 (¬ (𝑥 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸) → ¬ 𝑥 ∈ (𝐷𝐿𝐸))
8179, 80syl 17 . . . . . . . . . 10 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ 𝑥 ∈ (𝐷𝐿𝐸))
821, 2, 18, 11, 36, 14, 30, 38ncolne1 26129 . . . . . . . . . . . . . 14 (𝜑𝐷𝐸)
831, 2, 18, 11, 36, 14, 82tgelrnln 26134 . . . . . . . . . . . . 13 (𝜑 → (𝐷𝐿𝐸) ∈ ran 𝐿)
8483ad2antrr 714 . . . . . . . . . . . 12 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝐷𝐿𝐸) ∈ ran 𝐿)
851, 2, 18, 11, 36, 14, 82tglinerflx2 26138 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ (𝐷𝐿𝐸))
8685ad2antrr 714 . . . . . . . . . . . 12 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐸 ∈ (𝐷𝐿𝐸))
871, 2, 18, 12, 28, 15, 42, 42, 84, 41, 86tglinethru 26140 . . . . . . . . . . 11 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝐷𝐿𝐸) = (𝑑𝐿𝐸))
8887ad3antrrr 718 . . . . . . . . . 10 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → (𝐷𝐿𝐸) = (𝑑𝐿𝐸))
8981, 88neleqtrd 2882 . . . . . . . . 9 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ 𝑥 ∈ (𝑑𝐿𝐸))
901, 2, 18, 13, 66, 16, 61, 3, 68, 62, 6, 89, 75hphl 26275 . . . . . . . 8 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥((hpG‘𝐺)‘(𝑑𝐿𝐸))𝑋)
9187fveq2d 6501 . . . . . . . . . 10 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ((hpG‘𝐺)‘(𝐷𝐿𝐸)) = ((hpG‘𝐺)‘(𝑑𝐿𝐸)))
9291ad3antrrr 718 . . . . . . . . 9 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ((hpG‘𝐺)‘(𝐷𝐿𝐸)) = ((hpG‘𝐺)‘(𝑑𝐿𝐸)))
93 acopyeu.3 . . . . . . . . . 10 (𝜑𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
9493ad5antr 722 . . . . . . . . 9 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
9592, 94breqdi 4941 . . . . . . . 8 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑋((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹)
961, 2, 18, 13, 66, 62, 61, 6, 90, 32, 95hpgtr 26272 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹)
97 acopyeu.2 . . . . . . . . . . . . . . . 16 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑌”⟩)
981, 2, 17, 11, 19, 22, 25, 36, 14, 8, 97, 18, 71cgrancol 26333 . . . . . . . . . . . . . . 15 (𝜑 → ¬ (𝑌 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
991, 18, 2, 11, 36, 14, 8, 98ncolcom 26065 . . . . . . . . . . . . . 14 (𝜑 → ¬ (𝑌 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
10099ad5antr 722 . . . . . . . . . . . . 13 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑌 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
101 simprrr 770 . . . . . . . . . . . . . 14 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦(𝐾𝐸)𝑌)
1021, 2, 3, 7, 10, 16, 13, 18, 101hlln 26111 . . . . . . . . . . . . 13 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦 ∈ (𝑌𝐿𝐸))
1031, 2, 3, 7, 10, 16, 13, 101hlne1 26109 . . . . . . . . . . . . 13 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦𝐸)
1041, 2, 18, 13, 10, 16, 69, 7, 100, 102, 103ncolncol 26150 . . . . . . . . . . . 12 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑦 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
1051, 18, 2, 13, 16, 69, 7, 104ncolcom 26065 . . . . . . . . . . 11 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑦 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
106 pm2.45 866 . . . . . . . . . . 11 (¬ (𝑦 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸) → ¬ 𝑦 ∈ (𝐷𝐿𝐸))
107105, 106syl 17 . . . . . . . . . 10 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ 𝑦 ∈ (𝐷𝐿𝐸))
108107, 88neleqtrd 2882 . . . . . . . . 9 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ 𝑦 ∈ (𝑑𝐿𝐸))
1091, 2, 18, 13, 66, 16, 61, 3, 68, 7, 10, 108, 101hphl 26275 . . . . . . . 8 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦((hpG‘𝐺)‘(𝑑𝐿𝐸))𝑌)
110 acopyeu.4 . . . . . . . . . 10 (𝜑𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
111110ad5antr 722 . . . . . . . . 9 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
11292, 111breqdi 4941 . . . . . . . 8 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑌((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹)
1131, 2, 18, 13, 66, 7, 61, 10, 109, 32, 112hpgtr 26272 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹)
1141, 17, 2, 18, 3, 13, 21, 24, 27, 29, 16, 32, 35, 44, 48, 61, 62, 7, 63, 64, 96, 113trgcopyeulem 26309 . . . . . 6 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥 = 𝑦)
115114, 75eqbrtrrd 4950 . . . . 5 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦(𝐾𝐸)𝑋)
1161, 2, 3, 7, 6, 16, 13, 115hlcomd 26108 . . . 4 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑋(𝐾𝐸)𝑦)
1171, 2, 3, 6, 7, 10, 13, 16, 116, 101hltr 26114 . . 3 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑋(𝐾𝐸)𝑌)
11870ad2antrr 714 . . . . . 6 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑋”⟩)
1191, 2, 3, 12, 20, 23, 26, 37, 15, 5, 118, 28, 40cgrahl1 26320 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝑋”⟩)
1201, 2, 18, 11, 19, 22, 25, 33ncolne1 26129 . . . . . . 7 (𝜑𝐴𝐵)
121120ad2antrr 714 . . . . . 6 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐴𝐵)
1221, 2, 3, 12, 20, 23, 26, 28, 15, 5, 17, 121, 47iscgra1 26314 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝑋”⟩ ↔ ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋)))
123119, 122mpbid 224 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋))
12497ad2antrr 714 . . . . . 6 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑌”⟩)
1251, 2, 3, 12, 20, 23, 26, 37, 15, 9, 124, 28, 40cgrahl1 26320 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝑌”⟩)
1261, 2, 3, 12, 20, 23, 26, 28, 15, 9, 17, 121, 47iscgra1 26314 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝑌”⟩ ↔ ∃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌)))
127125, 126mpbid 224 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ∃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))
128 reeanv 3303 . . . 4 (∃𝑥𝑃𝑦𝑃 ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌)) ↔ (∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ ∃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌)))
129123, 127, 128sylanbrc 575 . . 3 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ∃𝑥𝑃𝑦𝑃 ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌)))
130117, 129r19.29vva 3272 . 2 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑋(𝐾𝐸)𝑌)
131120necomd 3017 . . 3 (𝜑𝐵𝐴)
1321, 2, 3, 14, 22, 19, 11, 36, 17, 82, 131hlcgrex 26120 . 2 (𝜑 → ∃𝑑𝑃 (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴)))
133130, 132r19.29a 3229 1 (𝜑𝑋(𝐾𝐸)𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  wo 834   = wceq 1508  wcel 2051  wne 2962  wrex 3084  cdif 3821   class class class wbr 4926  {copab 4988  ran crn 5405  cfv 6186  (class class class)co 6975  ⟨“cs3 14065  Basecbs 16338  distcds 16429  TarskiGcstrkg 25934  Itvcitv 25940  LineGclng 25941  cgrGccgrg 26014  hlGchlg 26104  hpGchpg 26261  cgrAccgra 26311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-int 4747  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-om 7396  df-1st 7500  df-2nd 7501  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-1o 7904  df-oadd 7908  df-er 8088  df-map 8207  df-pm 8208  df-en 8306  df-dom 8307  df-sdom 8308  df-fin 8309  df-dju 9123  df-card 9161  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-nn 11439  df-2 11502  df-3 11503  df-n0 11707  df-xnn0 11779  df-z 11793  df-uz 12058  df-fz 12708  df-fzo 12849  df-hash 13505  df-word 13672  df-concat 13733  df-s1 13758  df-s2 14071  df-s3 14072  df-trkgc 25952  df-trkgb 25953  df-trkgcb 25954  df-trkgld 25956  df-trkg 25957  df-cgrg 26015  df-leg 26087  df-hlg 26105  df-mir 26157  df-rag 26198  df-perpg 26200  df-hpg 26262  df-mid 26278  df-lmi 26279  df-cgra 26312
This theorem is referenced by:  tgasa1  26363
  Copyright terms: Public domain W3C validator