Step | Hyp | Ref
| Expression |
1 | | 0nn0 12491 |
. . 3
β’ 0 β
β0 |
2 | | eqid 2730 |
. . . 4
β’
{β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (BaseβπΎ)π₯ = (π( Β·π
βπ)π¦))} = {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (BaseβπΎ)π₯ = (π( Β·π
βπ)π¦))} |
3 | | 0prjspn.w |
. . . 4
β’ π = (πΎ freeLMod (0...0)) |
4 | | 0prjspn.b |
. . . 4
β’ π΅ = ((Baseβπ) β
{(0gβπ)}) |
5 | | eqid 2730 |
. . . 4
β’
(BaseβπΎ) =
(BaseβπΎ) |
6 | | eqid 2730 |
. . . 4
β’ (
Β·π βπ) = ( Β·π
βπ) |
7 | 2, 3, 4, 5, 6 | prjspnval2 41662 |
. . 3
β’ ((0
β β0 β§ πΎ β DivRing) β
(0βπ£π πnπΎ) = (π΅ / {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (BaseβπΎ)π₯ = (π( Β·π
βπ)π¦))})) |
8 | 1, 7 | mpan 686 |
. 2
β’ (πΎ β DivRing β
(0βπ£π πnπΎ) = (π΅ / {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (BaseβπΎ)π₯ = (π( Β·π
βπ)π¦))})) |
9 | | ovex 7444 |
. . . . . . . 8
β’ (0...0)
β V |
10 | 3 | frlmsca 21527 |
. . . . . . . 8
β’ ((πΎ β DivRing β§ (0...0)
β V) β πΎ =
(Scalarβπ)) |
11 | 9, 10 | mpan2 687 |
. . . . . . 7
β’ (πΎ β DivRing β πΎ = (Scalarβπ)) |
12 | 11 | fveq2d 6894 |
. . . . . 6
β’ (πΎ β DivRing β
(BaseβπΎ) =
(Baseβ(Scalarβπ))) |
13 | 12 | rexeqdv 3324 |
. . . . 5
β’ (πΎ β DivRing β
(βπ β
(BaseβπΎ)π₯ = (π( Β·π
βπ)π¦) β βπ β (Baseβ(Scalarβπ))π₯ = (π( Β·π
βπ)π¦))) |
14 | 13 | anbi2d 627 |
. . . 4
β’ (πΎ β DivRing β (((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (BaseβπΎ)π₯ = (π( Β·π
βπ)π¦)) β ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π( Β·π
βπ)π¦)))) |
15 | 14 | opabbidv 5213 |
. . 3
β’ (πΎ β DivRing β
{β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (BaseβπΎ)π₯ = (π( Β·π
βπ)π¦))} = {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π( Β·π
βπ)π¦))}) |
16 | 15 | qseq2d 8762 |
. 2
β’ (πΎ β DivRing β (π΅ / {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (BaseβπΎ)π₯ = (π( Β·π
βπ)π¦))}) = (π΅ / {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π( Β·π
βπ)π¦))})) |
17 | 3 | frlmlvec 21535 |
. . . . . . 7
β’ ((πΎ β DivRing β§ (0...0)
β V) β π β
LVec) |
18 | 9, 17 | mpan2 687 |
. . . . . 6
β’ (πΎ β DivRing β π β LVec) |
19 | | lveclmod 20861 |
. . . . . 6
β’ (π β LVec β π β LMod) |
20 | 18, 19 | syl 17 |
. . . . 5
β’ (πΎ β DivRing β π β LMod) |
21 | 20 | adantr 479 |
. . . 4
β’ ((πΎ β DivRing β§ (π β π΅ β§ π β π΅)) β π β LMod) |
22 | 15 | adantr 479 |
. . . . . 6
β’ ((πΎ β DivRing β§ π β π΅) β {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (BaseβπΎ)π₯ = (π( Β·π
βπ)π¦))} = {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π( Β·π
βπ)π¦))}) |
23 | | eqid 2730 |
. . . . . . 7
β’ ((πΎ unitVec (0...0))β0) =
((πΎ unitVec
(0...0))β0) |
24 | 2, 4, 6, 5, 3, 23 | 0prjspnrel 41671 |
. . . . . 6
β’ ((πΎ β DivRing β§ π β π΅) β π{β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (BaseβπΎ)π₯ = (π( Β·π
βπ)π¦))} ((πΎ unitVec (0...0))β0)) |
25 | 22, 24 | breqdi 5162 |
. . . . 5
β’ ((πΎ β DivRing β§ π β π΅) β π{β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π( Β·π
βπ)π¦))} ((πΎ unitVec (0...0))β0)) |
26 | 25 | adantrr 713 |
. . . 4
β’ ((πΎ β DivRing β§ (π β π΅ β§ π β π΅)) β π{β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π( Β·π
βπ)π¦))} ((πΎ unitVec (0...0))β0)) |
27 | 15 | adantr 479 |
. . . . . . 7
β’ ((πΎ β DivRing β§ π β π΅) β {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (BaseβπΎ)π₯ = (π( Β·π
βπ)π¦))} = {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π( Β·π
βπ)π¦))}) |
28 | 2, 4, 6, 5, 3, 23 | 0prjspnrel 41671 |
. . . . . . 7
β’ ((πΎ β DivRing β§ π β π΅) β π{β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (BaseβπΎ)π₯ = (π( Β·π
βπ)π¦))} ((πΎ unitVec (0...0))β0)) |
29 | 27, 28 | breqdi 5162 |
. . . . . 6
β’ ((πΎ β DivRing β§ π β π΅) β π{β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π( Β·π
βπ)π¦))} ((πΎ unitVec (0...0))β0)) |
30 | | eqid 2730 |
. . . . . . 7
β’
{β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π( Β·π
βπ)π¦))} = {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π( Β·π
βπ)π¦))} |
31 | | eqid 2730 |
. . . . . . 7
β’
(Scalarβπ) =
(Scalarβπ) |
32 | | eqid 2730 |
. . . . . . 7
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
33 | 30, 4, 31, 6, 32 | prjspersym 41651 |
. . . . . 6
β’ ((π β LVec β§ π{β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π( Β·π
βπ)π¦))} ((πΎ unitVec (0...0))β0)) β ((πΎ unitVec
(0...0))β0){β¨π₯,
π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π( Β·π
βπ)π¦))}π) |
34 | 18, 29, 33 | syl2an2r 681 |
. . . . 5
β’ ((πΎ β DivRing β§ π β π΅) β ((πΎ unitVec (0...0))β0){β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π( Β·π
βπ)π¦))}π) |
35 | 34 | adantrl 712 |
. . . 4
β’ ((πΎ β DivRing β§ (π β π΅ β§ π β π΅)) β ((πΎ unitVec (0...0))β0){β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π( Β·π
βπ)π¦))}π) |
36 | 30, 4, 31, 6, 32 | prjspertr 41649 |
. . . 4
β’ ((π β LMod β§ (π{β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π( Β·π
βπ)π¦))} ((πΎ unitVec (0...0))β0) β§ ((πΎ unitVec
(0...0))β0){β¨π₯,
π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π( Β·π
βπ)π¦))}π)) β π{β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π( Β·π
βπ)π¦))}π) |
37 | 21, 26, 35, 36 | syl12anc 833 |
. . 3
β’ ((πΎ β DivRing β§ (π β π΅ β§ π β π΅)) β π{β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π( Β·π
βπ)π¦))}π) |
38 | 30, 4, 31, 6, 32 | prjsper 41652 |
. . . 4
β’ (π β LVec β {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π( Β·π
βπ)π¦))} Er π΅) |
39 | 18, 38 | syl 17 |
. . 3
β’ (πΎ β DivRing β
{β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π( Β·π
βπ)π¦))} Er π΅) |
40 | 4, 3, 23 | 0prjspnlem 41667 |
. . 3
β’ (πΎ β DivRing β ((πΎ unitVec (0...0))β0)
β π΅) |
41 | 37, 39, 40 | qsalrel 41368 |
. 2
β’ (πΎ β DivRing β (π΅ / {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π( Β·π
βπ)π¦))}) = {π΅}) |
42 | 8, 16, 41 | 3eqtrd 2774 |
1
β’ (πΎ β DivRing β
(0βπ£π πnπΎ) = {π΅}) |