Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0prjspn Structured version   Visualization version   GIF version

Theorem 0prjspn 42046
Description: A zero-dimensional projective space has only 1 point. (Contributed by Steven Nguyen, 9-Jun-2023.)
Hypotheses
Ref Expression
0prjspn.w 𝑊 = (𝐾 freeLMod (0...0))
0prjspn.b 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
Assertion
Ref Expression
0prjspn (𝐾 ∈ DivRing → (0ℙ𝕣𝕠𝕛n𝐾) = {𝐵})

Proof of Theorem 0prjspn
Dummy variables 𝑎 𝑏 𝑙 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 12511 . . 3 0 ∈ ℕ0
2 eqid 2728 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))}
3 0prjspn.w . . . 4 𝑊 = (𝐾 freeLMod (0...0))
4 0prjspn.b . . . 4 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
5 eqid 2728 . . . 4 (Base‘𝐾) = (Base‘𝐾)
6 eqid 2728 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
72, 3, 4, 5, 6prjspnval2 42036 . . 3 ((0 ∈ ℕ0𝐾 ∈ DivRing) → (0ℙ𝕣𝕠𝕛n𝐾) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))}))
81, 7mpan 689 . 2 (𝐾 ∈ DivRing → (0ℙ𝕣𝕠𝕛n𝐾) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))}))
9 ovex 7447 . . . . . . . 8 (0...0) ∈ V
103frlmsca 21680 . . . . . . . 8 ((𝐾 ∈ DivRing ∧ (0...0) ∈ V) → 𝐾 = (Scalar‘𝑊))
119, 10mpan2 690 . . . . . . 7 (𝐾 ∈ DivRing → 𝐾 = (Scalar‘𝑊))
1211fveq2d 6895 . . . . . 6 (𝐾 ∈ DivRing → (Base‘𝐾) = (Base‘(Scalar‘𝑊)))
1312rexeqdv 3322 . . . . 5 (𝐾 ∈ DivRing → (∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦) ↔ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦)))
1413anbi2d 629 . . . 4 (𝐾 ∈ DivRing → (((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦)) ↔ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))))
1514opabbidv 5208 . . 3 (𝐾 ∈ DivRing → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))})
1615qseq2d 8777 . 2 (𝐾 ∈ DivRing → (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))}) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}))
173frlmlvec 21688 . . . . . . 7 ((𝐾 ∈ DivRing ∧ (0...0) ∈ V) → 𝑊 ∈ LVec)
189, 17mpan2 690 . . . . . 6 (𝐾 ∈ DivRing → 𝑊 ∈ LVec)
19 lveclmod 20984 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2018, 19syl 17 . . . . 5 (𝐾 ∈ DivRing → 𝑊 ∈ LMod)
2120adantr 480 . . . 4 ((𝐾 ∈ DivRing ∧ (𝑎𝐵𝑏𝐵)) → 𝑊 ∈ LMod)
2215adantr 480 . . . . . 6 ((𝐾 ∈ DivRing ∧ 𝑎𝐵) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))})
23 eqid 2728 . . . . . . 7 ((𝐾 unitVec (0...0))‘0) = ((𝐾 unitVec (0...0))‘0)
242, 4, 6, 5, 3, 230prjspnrel 42045 . . . . . 6 ((𝐾 ∈ DivRing ∧ 𝑎𝐵) → 𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0))
2522, 24breqdi 5157 . . . . 5 ((𝐾 ∈ DivRing ∧ 𝑎𝐵) → 𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0))
2625adantrr 716 . . . 4 ((𝐾 ∈ DivRing ∧ (𝑎𝐵𝑏𝐵)) → 𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0))
2715adantr 480 . . . . . . 7 ((𝐾 ∈ DivRing ∧ 𝑏𝐵) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))})
282, 4, 6, 5, 3, 230prjspnrel 42045 . . . . . . 7 ((𝐾 ∈ DivRing ∧ 𝑏𝐵) → 𝑏{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0))
2927, 28breqdi 5157 . . . . . 6 ((𝐾 ∈ DivRing ∧ 𝑏𝐵) → 𝑏{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0))
30 eqid 2728 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}
31 eqid 2728 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
32 eqid 2728 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3330, 4, 31, 6, 32prjspersym 42025 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝑏{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0)) → ((𝐾 unitVec (0...0))‘0){⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)
3418, 29, 33syl2an2r 684 . . . . 5 ((𝐾 ∈ DivRing ∧ 𝑏𝐵) → ((𝐾 unitVec (0...0))‘0){⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)
3534adantrl 715 . . . 4 ((𝐾 ∈ DivRing ∧ (𝑎𝐵𝑏𝐵)) → ((𝐾 unitVec (0...0))‘0){⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)
3630, 4, 31, 6, 32prjspertr 42023 . . . 4 ((𝑊 ∈ LMod ∧ (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0) ∧ ((𝐾 unitVec (0...0))‘0){⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)) → 𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)
3721, 26, 35, 36syl12anc 836 . . 3 ((𝐾 ∈ DivRing ∧ (𝑎𝐵𝑏𝐵)) → 𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)
3830, 4, 31, 6, 32prjsper 42026 . . . 4 (𝑊 ∈ LVec → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} Er 𝐵)
3918, 38syl 17 . . 3 (𝐾 ∈ DivRing → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} Er 𝐵)
404, 3, 230prjspnlem 42041 . . 3 (𝐾 ∈ DivRing → ((𝐾 unitVec (0...0))‘0) ∈ 𝐵)
4137, 39, 40qsalrel 41725 . 2 (𝐾 ∈ DivRing → (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}) = {𝐵})
428, 16, 413eqtrd 2772 1 (𝐾 ∈ DivRing → (0ℙ𝕣𝕠𝕛n𝐾) = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wrex 3066  Vcvv 3470  cdif 3942  {csn 4624   class class class wbr 5142  {copab 5204  cfv 6542  (class class class)co 7414   Er wer 8715   / cqs 8717  0cc0 11132  0cn0 12496  ...cfz 13510  Basecbs 17173  Scalarcsca 17229   ·𝑠 cvsca 17230  0gc0g 17414  DivRingcdr 20617  LModclmod 20736  LVecclvec 20980   freeLMod cfrlm 21673   unitVec cuvc 21709  ℙ𝕣𝕠𝕛ncprjspn 42032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-ec 8720  df-qs 8724  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-sup 9459  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-fz 13511  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-hom 17250  df-cco 17251  df-0g 17416  df-prds 17422  df-pws 17424  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-grp 18886  df-minusg 18887  df-sbg 18888  df-subg 19071  df-cmn 19730  df-abl 19731  df-mgp 20068  df-rng 20086  df-ur 20115  df-ring 20168  df-oppr 20266  df-dvdsr 20289  df-unit 20290  df-invr 20320  df-nzr 20445  df-subrg 20501  df-drng 20619  df-lmod 20738  df-lss 20809  df-lvec 20981  df-sra 21051  df-rgmod 21052  df-dsmm 21659  df-frlm 21674  df-uvc 21710  df-prjsp 42020  df-prjspn 42033
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator