Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0prjspn Structured version   Visualization version   GIF version

Theorem 0prjspn 42667
Description: A zero-dimensional projective space has only 1 point. (Contributed by Steven Nguyen, 9-Jun-2023.)
Hypotheses
Ref Expression
0prjspn.w 𝑊 = (𝐾 freeLMod (0...0))
0prjspn.b 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
Assertion
Ref Expression
0prjspn (𝐾 ∈ DivRing → (0ℙ𝕣𝕠𝕛n𝐾) = {𝐵})

Proof of Theorem 0prjspn
Dummy variables 𝑎 𝑏 𝑙 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 12396 . . 3 0 ∈ ℕ0
2 eqid 2731 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))}
3 0prjspn.w . . . 4 𝑊 = (𝐾 freeLMod (0...0))
4 0prjspn.b . . . 4 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
5 eqid 2731 . . . 4 (Base‘𝐾) = (Base‘𝐾)
6 eqid 2731 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
72, 3, 4, 5, 6prjspnval2 42657 . . 3 ((0 ∈ ℕ0𝐾 ∈ DivRing) → (0ℙ𝕣𝕠𝕛n𝐾) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))}))
81, 7mpan 690 . 2 (𝐾 ∈ DivRing → (0ℙ𝕣𝕠𝕛n𝐾) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))}))
9 ovex 7379 . . . . . . . 8 (0...0) ∈ V
103frlmsca 21691 . . . . . . . 8 ((𝐾 ∈ DivRing ∧ (0...0) ∈ V) → 𝐾 = (Scalar‘𝑊))
119, 10mpan2 691 . . . . . . 7 (𝐾 ∈ DivRing → 𝐾 = (Scalar‘𝑊))
1211fveq2d 6826 . . . . . 6 (𝐾 ∈ DivRing → (Base‘𝐾) = (Base‘(Scalar‘𝑊)))
1312rexeqdv 3293 . . . . 5 (𝐾 ∈ DivRing → (∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦) ↔ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦)))
1413anbi2d 630 . . . 4 (𝐾 ∈ DivRing → (((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦)) ↔ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))))
1514opabbidv 5157 . . 3 (𝐾 ∈ DivRing → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))})
1615qseq2d 8685 . 2 (𝐾 ∈ DivRing → (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))}) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}))
173frlmlvec 21699 . . . . . . 7 ((𝐾 ∈ DivRing ∧ (0...0) ∈ V) → 𝑊 ∈ LVec)
189, 17mpan2 691 . . . . . 6 (𝐾 ∈ DivRing → 𝑊 ∈ LVec)
19 lveclmod 21041 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2018, 19syl 17 . . . . 5 (𝐾 ∈ DivRing → 𝑊 ∈ LMod)
2120adantr 480 . . . 4 ((𝐾 ∈ DivRing ∧ (𝑎𝐵𝑏𝐵)) → 𝑊 ∈ LMod)
2215adantr 480 . . . . . 6 ((𝐾 ∈ DivRing ∧ 𝑎𝐵) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))})
23 eqid 2731 . . . . . . 7 ((𝐾 unitVec (0...0))‘0) = ((𝐾 unitVec (0...0))‘0)
242, 4, 6, 5, 3, 230prjspnrel 42666 . . . . . 6 ((𝐾 ∈ DivRing ∧ 𝑎𝐵) → 𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0))
2522, 24breqdi 5106 . . . . 5 ((𝐾 ∈ DivRing ∧ 𝑎𝐵) → 𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0))
2625adantrr 717 . . . 4 ((𝐾 ∈ DivRing ∧ (𝑎𝐵𝑏𝐵)) → 𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0))
2715adantr 480 . . . . . . 7 ((𝐾 ∈ DivRing ∧ 𝑏𝐵) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))})
282, 4, 6, 5, 3, 230prjspnrel 42666 . . . . . . 7 ((𝐾 ∈ DivRing ∧ 𝑏𝐵) → 𝑏{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0))
2927, 28breqdi 5106 . . . . . 6 ((𝐾 ∈ DivRing ∧ 𝑏𝐵) → 𝑏{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0))
30 eqid 2731 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}
31 eqid 2731 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
32 eqid 2731 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3330, 4, 31, 6, 32prjspersym 42646 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝑏{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0)) → ((𝐾 unitVec (0...0))‘0){⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)
3418, 29, 33syl2an2r 685 . . . . 5 ((𝐾 ∈ DivRing ∧ 𝑏𝐵) → ((𝐾 unitVec (0...0))‘0){⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)
3534adantrl 716 . . . 4 ((𝐾 ∈ DivRing ∧ (𝑎𝐵𝑏𝐵)) → ((𝐾 unitVec (0...0))‘0){⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)
3630, 4, 31, 6, 32prjspertr 42644 . . . 4 ((𝑊 ∈ LMod ∧ (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0) ∧ ((𝐾 unitVec (0...0))‘0){⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)) → 𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)
3721, 26, 35, 36syl12anc 836 . . 3 ((𝐾 ∈ DivRing ∧ (𝑎𝐵𝑏𝐵)) → 𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)
3830, 4, 31, 6, 32prjsper 42647 . . . 4 (𝑊 ∈ LVec → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} Er 𝐵)
3918, 38syl 17 . . 3 (𝐾 ∈ DivRing → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} Er 𝐵)
404, 3, 230prjspnlem 42662 . . 3 (𝐾 ∈ DivRing → ((𝐾 unitVec (0...0))‘0) ∈ 𝐵)
4137, 39, 40qsalrel 42279 . 2 (𝐾 ∈ DivRing → (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}) = {𝐵})
428, 16, 413eqtrd 2770 1 (𝐾 ∈ DivRing → (0ℙ𝕣𝕠𝕛n𝐾) = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436  cdif 3899  {csn 4576   class class class wbr 5091  {copab 5153  cfv 6481  (class class class)co 7346   Er wer 8619   / cqs 8621  0cc0 11006  0cn0 12381  ...cfz 13407  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  DivRingcdr 20645  LModclmod 20794  LVecclvec 21037   freeLMod cfrlm 21684   unitVec cuvc 21720  ℙ𝕣𝕠𝕛ncprjspn 42653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-oppr 20256  df-dvdsr 20276  df-unit 20277  df-invr 20307  df-nzr 20429  df-subrg 20486  df-drng 20647  df-lmod 20796  df-lss 20866  df-lvec 21038  df-sra 21108  df-rgmod 21109  df-dsmm 21670  df-frlm 21685  df-uvc 21721  df-prjsp 42641  df-prjspn 42654
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator