Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0prjspn Structured version   Visualization version   GIF version

Theorem 0prjspn 40114
Description: A zero-dimensional projective space has only 1 point. (Contributed by Steven Nguyen, 9-Jun-2023.)
Hypotheses
Ref Expression
0prjspn.w 𝑊 = (𝐾 freeLMod (0...0))
0prjspn.b 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
Assertion
Ref Expression
0prjspn (𝐾 ∈ DivRing → (0ℙ𝕣𝕠𝕛n𝐾) = {𝐵})

Proof of Theorem 0prjspn
Dummy variables 𝑎 𝑏 𝑙 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 12070 . . 3 0 ∈ ℕ0
2 eqid 2736 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))}
3 0prjspn.w . . . 4 𝑊 = (𝐾 freeLMod (0...0))
4 0prjspn.b . . . 4 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
5 eqid 2736 . . . 4 (Base‘𝐾) = (Base‘𝐾)
6 eqid 2736 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
72, 3, 4, 5, 6prjspnval2 40106 . . 3 ((0 ∈ ℕ0𝐾 ∈ DivRing) → (0ℙ𝕣𝕠𝕛n𝐾) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))}))
81, 7mpan 690 . 2 (𝐾 ∈ DivRing → (0ℙ𝕣𝕠𝕛n𝐾) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))}))
9 ovex 7224 . . . . . . . 8 (0...0) ∈ V
103frlmsca 20669 . . . . . . . 8 ((𝐾 ∈ DivRing ∧ (0...0) ∈ V) → 𝐾 = (Scalar‘𝑊))
119, 10mpan2 691 . . . . . . 7 (𝐾 ∈ DivRing → 𝐾 = (Scalar‘𝑊))
1211fveq2d 6699 . . . . . 6 (𝐾 ∈ DivRing → (Base‘𝐾) = (Base‘(Scalar‘𝑊)))
1312rexeqdv 3316 . . . . 5 (𝐾 ∈ DivRing → (∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦) ↔ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦)))
1413anbi2d 632 . . . 4 (𝐾 ∈ DivRing → (((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦)) ↔ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))))
1514opabbidv 5105 . . 3 (𝐾 ∈ DivRing → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))})
1615qseq2d 8426 . 2 (𝐾 ∈ DivRing → (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))}) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}))
173frlmlvec 20677 . . . . . . 7 ((𝐾 ∈ DivRing ∧ (0...0) ∈ V) → 𝑊 ∈ LVec)
189, 17mpan2 691 . . . . . 6 (𝐾 ∈ DivRing → 𝑊 ∈ LVec)
19 lveclmod 20097 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2018, 19syl 17 . . . . 5 (𝐾 ∈ DivRing → 𝑊 ∈ LMod)
2120adantr 484 . . . 4 ((𝐾 ∈ DivRing ∧ (𝑎𝐵𝑏𝐵)) → 𝑊 ∈ LMod)
2215adantr 484 . . . . . 6 ((𝐾 ∈ DivRing ∧ 𝑎𝐵) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))})
23 eqid 2736 . . . . . . 7 ((𝐾 unitVec (0...0))‘0) = ((𝐾 unitVec (0...0))‘0)
242, 4, 6, 5, 3, 230prjspnrel 40113 . . . . . 6 ((𝐾 ∈ DivRing ∧ 𝑎𝐵) → 𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0))
2522, 24breqdi 5054 . . . . 5 ((𝐾 ∈ DivRing ∧ 𝑎𝐵) → 𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0))
2625adantrr 717 . . . 4 ((𝐾 ∈ DivRing ∧ (𝑎𝐵𝑏𝐵)) → 𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0))
2715adantr 484 . . . . . . 7 ((𝐾 ∈ DivRing ∧ 𝑏𝐵) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))})
282, 4, 6, 5, 3, 230prjspnrel 40113 . . . . . . 7 ((𝐾 ∈ DivRing ∧ 𝑏𝐵) → 𝑏{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0))
2927, 28breqdi 5054 . . . . . 6 ((𝐾 ∈ DivRing ∧ 𝑏𝐵) → 𝑏{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0))
30 eqid 2736 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}
31 eqid 2736 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
32 eqid 2736 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3330, 4, 31, 6, 32prjspersym 40095 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝑏{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0)) → ((𝐾 unitVec (0...0))‘0){⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)
3418, 29, 33syl2an2r 685 . . . . 5 ((𝐾 ∈ DivRing ∧ 𝑏𝐵) → ((𝐾 unitVec (0...0))‘0){⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)
3534adantrl 716 . . . 4 ((𝐾 ∈ DivRing ∧ (𝑎𝐵𝑏𝐵)) → ((𝐾 unitVec (0...0))‘0){⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)
3630, 4, 31, 6, 32prjspertr 40093 . . . 4 ((𝑊 ∈ LMod ∧ (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0) ∧ ((𝐾 unitVec (0...0))‘0){⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)) → 𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)
3721, 26, 35, 36syl12anc 837 . . 3 ((𝐾 ∈ DivRing ∧ (𝑎𝐵𝑏𝐵)) → 𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)
3830, 4, 31, 6, 32prjsper 40096 . . . 4 (𝑊 ∈ LVec → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} Er 𝐵)
3918, 38syl 17 . . 3 (𝐾 ∈ DivRing → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} Er 𝐵)
404, 3, 230prjspnlem 40109 . . 3 (𝐾 ∈ DivRing → ((𝐾 unitVec (0...0))‘0) ∈ 𝐵)
4137, 39, 40qsalrel 39869 . 2 (𝐾 ∈ DivRing → (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}) = {𝐵})
428, 16, 413eqtrd 2775 1 (𝐾 ∈ DivRing → (0ℙ𝕣𝕠𝕛n𝐾) = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wrex 3052  Vcvv 3398  cdif 3850  {csn 4527   class class class wbr 5039  {copab 5101  cfv 6358  (class class class)co 7191   Er wer 8366   / cqs 8368  0cc0 10694  0cn0 12055  ...cfz 13060  Basecbs 16666  Scalarcsca 16752   ·𝑠 cvsca 16753  0gc0g 16898  DivRingcdr 19721  LModclmod 19853  LVecclvec 20093   freeLMod cfrlm 20662   unitVec cuvc 20698  ℙ𝕣𝕠𝕛ncprjspn 40102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-tpos 7946  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-ec 8371  df-qs 8375  df-map 8488  df-ixp 8557  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-sup 9036  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-fz 13061  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-hom 16773  df-cco 16774  df-0g 16900  df-prds 16906  df-pws 16908  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-grp 18322  df-minusg 18323  df-sbg 18324  df-subg 18494  df-mgp 19459  df-ur 19471  df-ring 19518  df-oppr 19595  df-dvdsr 19613  df-unit 19614  df-invr 19644  df-drng 19723  df-subrg 19752  df-lmod 19855  df-lss 19923  df-lvec 20094  df-sra 20163  df-rgmod 20164  df-nzr 20250  df-dsmm 20648  df-frlm 20663  df-uvc 20699  df-prjsp 40090  df-prjspn 40103
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator