Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0prjspn Structured version   Visualization version   GIF version

Theorem 0prjspn 40952
Description: A zero-dimensional projective space has only 1 point. (Contributed by Steven Nguyen, 9-Jun-2023.)
Hypotheses
Ref Expression
0prjspn.w 𝑊 = (𝐾 freeLMod (0...0))
0prjspn.b 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
Assertion
Ref Expression
0prjspn (𝐾 ∈ DivRing → (0ℙ𝕣𝕠𝕛n𝐾) = {𝐵})

Proof of Theorem 0prjspn
Dummy variables 𝑎 𝑏 𝑙 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 12428 . . 3 0 ∈ ℕ0
2 eqid 2736 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))}
3 0prjspn.w . . . 4 𝑊 = (𝐾 freeLMod (0...0))
4 0prjspn.b . . . 4 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
5 eqid 2736 . . . 4 (Base‘𝐾) = (Base‘𝐾)
6 eqid 2736 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
72, 3, 4, 5, 6prjspnval2 40942 . . 3 ((0 ∈ ℕ0𝐾 ∈ DivRing) → (0ℙ𝕣𝕠𝕛n𝐾) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))}))
81, 7mpan 688 . 2 (𝐾 ∈ DivRing → (0ℙ𝕣𝕠𝕛n𝐾) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))}))
9 ovex 7390 . . . . . . . 8 (0...0) ∈ V
103frlmsca 21159 . . . . . . . 8 ((𝐾 ∈ DivRing ∧ (0...0) ∈ V) → 𝐾 = (Scalar‘𝑊))
119, 10mpan2 689 . . . . . . 7 (𝐾 ∈ DivRing → 𝐾 = (Scalar‘𝑊))
1211fveq2d 6846 . . . . . 6 (𝐾 ∈ DivRing → (Base‘𝐾) = (Base‘(Scalar‘𝑊)))
1312rexeqdv 3314 . . . . 5 (𝐾 ∈ DivRing → (∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦) ↔ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦)))
1413anbi2d 629 . . . 4 (𝐾 ∈ DivRing → (((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦)) ↔ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))))
1514opabbidv 5171 . . 3 (𝐾 ∈ DivRing → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))})
1615qseq2d 8705 . 2 (𝐾 ∈ DivRing → (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))}) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}))
173frlmlvec 21167 . . . . . . 7 ((𝐾 ∈ DivRing ∧ (0...0) ∈ V) → 𝑊 ∈ LVec)
189, 17mpan2 689 . . . . . 6 (𝐾 ∈ DivRing → 𝑊 ∈ LVec)
19 lveclmod 20567 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2018, 19syl 17 . . . . 5 (𝐾 ∈ DivRing → 𝑊 ∈ LMod)
2120adantr 481 . . . 4 ((𝐾 ∈ DivRing ∧ (𝑎𝐵𝑏𝐵)) → 𝑊 ∈ LMod)
2215adantr 481 . . . . . 6 ((𝐾 ∈ DivRing ∧ 𝑎𝐵) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))})
23 eqid 2736 . . . . . . 7 ((𝐾 unitVec (0...0))‘0) = ((𝐾 unitVec (0...0))‘0)
242, 4, 6, 5, 3, 230prjspnrel 40951 . . . . . 6 ((𝐾 ∈ DivRing ∧ 𝑎𝐵) → 𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0))
2522, 24breqdi 5120 . . . . 5 ((𝐾 ∈ DivRing ∧ 𝑎𝐵) → 𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0))
2625adantrr 715 . . . 4 ((𝐾 ∈ DivRing ∧ (𝑎𝐵𝑏𝐵)) → 𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0))
2715adantr 481 . . . . . . 7 ((𝐾 ∈ DivRing ∧ 𝑏𝐵) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))})
282, 4, 6, 5, 3, 230prjspnrel 40951 . . . . . . 7 ((𝐾 ∈ DivRing ∧ 𝑏𝐵) → 𝑏{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0))
2927, 28breqdi 5120 . . . . . 6 ((𝐾 ∈ DivRing ∧ 𝑏𝐵) → 𝑏{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0))
30 eqid 2736 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}
31 eqid 2736 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
32 eqid 2736 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3330, 4, 31, 6, 32prjspersym 40931 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝑏{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0)) → ((𝐾 unitVec (0...0))‘0){⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)
3418, 29, 33syl2an2r 683 . . . . 5 ((𝐾 ∈ DivRing ∧ 𝑏𝐵) → ((𝐾 unitVec (0...0))‘0){⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)
3534adantrl 714 . . . 4 ((𝐾 ∈ DivRing ∧ (𝑎𝐵𝑏𝐵)) → ((𝐾 unitVec (0...0))‘0){⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)
3630, 4, 31, 6, 32prjspertr 40929 . . . 4 ((𝑊 ∈ LMod ∧ (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0) ∧ ((𝐾 unitVec (0...0))‘0){⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)) → 𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)
3721, 26, 35, 36syl12anc 835 . . 3 ((𝐾 ∈ DivRing ∧ (𝑎𝐵𝑏𝐵)) → 𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)
3830, 4, 31, 6, 32prjsper 40932 . . . 4 (𝑊 ∈ LVec → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} Er 𝐵)
3918, 38syl 17 . . 3 (𝐾 ∈ DivRing → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} Er 𝐵)
404, 3, 230prjspnlem 40947 . . 3 (𝐾 ∈ DivRing → ((𝐾 unitVec (0...0))‘0) ∈ 𝐵)
4137, 39, 40qsalrel 40663 . 2 (𝐾 ∈ DivRing → (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}) = {𝐵})
428, 16, 413eqtrd 2780 1 (𝐾 ∈ DivRing → (0ℙ𝕣𝕠𝕛n𝐾) = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wrex 3073  Vcvv 3445  cdif 3907  {csn 4586   class class class wbr 5105  {copab 5167  cfv 6496  (class class class)co 7357   Er wer 8645   / cqs 8647  0cc0 11051  0cn0 12413  ...cfz 13424  Basecbs 17083  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321  DivRingcdr 20185  LModclmod 20322  LVecclvec 20563   freeLMod cfrlm 21152   unitVec cuvc 21188  ℙ𝕣𝕠𝕛ncprjspn 40938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-ec 8650  df-qs 8654  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-prds 17329  df-pws 17331  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-drng 20187  df-subrg 20220  df-lmod 20324  df-lss 20393  df-lvec 20564  df-sra 20633  df-rgmod 20634  df-nzr 20728  df-dsmm 21138  df-frlm 21153  df-uvc 21189  df-prjsp 40926  df-prjspn 40939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator