Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0prjspn Structured version   Visualization version   GIF version

Theorem 0prjspn 40465
Description: A zero-dimensional projective space has only 1 point. (Contributed by Steven Nguyen, 9-Jun-2023.)
Hypotheses
Ref Expression
0prjspn.w 𝑊 = (𝐾 freeLMod (0...0))
0prjspn.b 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
Assertion
Ref Expression
0prjspn (𝐾 ∈ DivRing → (0ℙ𝕣𝕠𝕛n𝐾) = {𝐵})

Proof of Theorem 0prjspn
Dummy variables 𝑎 𝑏 𝑙 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 12248 . . 3 0 ∈ ℕ0
2 eqid 2738 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))}
3 0prjspn.w . . . 4 𝑊 = (𝐾 freeLMod (0...0))
4 0prjspn.b . . . 4 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
5 eqid 2738 . . . 4 (Base‘𝐾) = (Base‘𝐾)
6 eqid 2738 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
72, 3, 4, 5, 6prjspnval2 40457 . . 3 ((0 ∈ ℕ0𝐾 ∈ DivRing) → (0ℙ𝕣𝕠𝕛n𝐾) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))}))
81, 7mpan 687 . 2 (𝐾 ∈ DivRing → (0ℙ𝕣𝕠𝕛n𝐾) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))}))
9 ovex 7308 . . . . . . . 8 (0...0) ∈ V
103frlmsca 20960 . . . . . . . 8 ((𝐾 ∈ DivRing ∧ (0...0) ∈ V) → 𝐾 = (Scalar‘𝑊))
119, 10mpan2 688 . . . . . . 7 (𝐾 ∈ DivRing → 𝐾 = (Scalar‘𝑊))
1211fveq2d 6778 . . . . . 6 (𝐾 ∈ DivRing → (Base‘𝐾) = (Base‘(Scalar‘𝑊)))
1312rexeqdv 3349 . . . . 5 (𝐾 ∈ DivRing → (∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦) ↔ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦)))
1413anbi2d 629 . . . 4 (𝐾 ∈ DivRing → (((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦)) ↔ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))))
1514opabbidv 5140 . . 3 (𝐾 ∈ DivRing → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))})
1615qseq2d 8555 . 2 (𝐾 ∈ DivRing → (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))}) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}))
173frlmlvec 20968 . . . . . . 7 ((𝐾 ∈ DivRing ∧ (0...0) ∈ V) → 𝑊 ∈ LVec)
189, 17mpan2 688 . . . . . 6 (𝐾 ∈ DivRing → 𝑊 ∈ LVec)
19 lveclmod 20368 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2018, 19syl 17 . . . . 5 (𝐾 ∈ DivRing → 𝑊 ∈ LMod)
2120adantr 481 . . . 4 ((𝐾 ∈ DivRing ∧ (𝑎𝐵𝑏𝐵)) → 𝑊 ∈ LMod)
2215adantr 481 . . . . . 6 ((𝐾 ∈ DivRing ∧ 𝑎𝐵) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))})
23 eqid 2738 . . . . . . 7 ((𝐾 unitVec (0...0))‘0) = ((𝐾 unitVec (0...0))‘0)
242, 4, 6, 5, 3, 230prjspnrel 40464 . . . . . 6 ((𝐾 ∈ DivRing ∧ 𝑎𝐵) → 𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0))
2522, 24breqdi 5089 . . . . 5 ((𝐾 ∈ DivRing ∧ 𝑎𝐵) → 𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0))
2625adantrr 714 . . . 4 ((𝐾 ∈ DivRing ∧ (𝑎𝐵𝑏𝐵)) → 𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0))
2715adantr 481 . . . . . . 7 ((𝐾 ∈ DivRing ∧ 𝑏𝐵) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))})
282, 4, 6, 5, 3, 230prjspnrel 40464 . . . . . . 7 ((𝐾 ∈ DivRing ∧ 𝑏𝐵) → 𝑏{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0))
2927, 28breqdi 5089 . . . . . 6 ((𝐾 ∈ DivRing ∧ 𝑏𝐵) → 𝑏{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0))
30 eqid 2738 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}
31 eqid 2738 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
32 eqid 2738 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3330, 4, 31, 6, 32prjspersym 40446 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝑏{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0)) → ((𝐾 unitVec (0...0))‘0){⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)
3418, 29, 33syl2an2r 682 . . . . 5 ((𝐾 ∈ DivRing ∧ 𝑏𝐵) → ((𝐾 unitVec (0...0))‘0){⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)
3534adantrl 713 . . . 4 ((𝐾 ∈ DivRing ∧ (𝑎𝐵𝑏𝐵)) → ((𝐾 unitVec (0...0))‘0){⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)
3630, 4, 31, 6, 32prjspertr 40444 . . . 4 ((𝑊 ∈ LMod ∧ (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} ((𝐾 unitVec (0...0))‘0) ∧ ((𝐾 unitVec (0...0))‘0){⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)) → 𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)
3721, 26, 35, 36syl12anc 834 . . 3 ((𝐾 ∈ DivRing ∧ (𝑎𝐵𝑏𝐵)) → 𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}𝑏)
3830, 4, 31, 6, 32prjsper 40447 . . . 4 (𝑊 ∈ LVec → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} Er 𝐵)
3918, 38syl 17 . . 3 (𝐾 ∈ DivRing → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))} Er 𝐵)
404, 3, 230prjspnlem 40460 . . 3 (𝐾 ∈ DivRing → ((𝐾 unitVec (0...0))‘0) ∈ 𝐵)
4137, 39, 40qsalrel 40215 . 2 (𝐾 ∈ DivRing → (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙( ·𝑠𝑊)𝑦))}) = {𝐵})
428, 16, 413eqtrd 2782 1 (𝐾 ∈ DivRing → (0ℙ𝕣𝕠𝕛n𝐾) = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wrex 3065  Vcvv 3432  cdif 3884  {csn 4561   class class class wbr 5074  {copab 5136  cfv 6433  (class class class)co 7275   Er wer 8495   / cqs 8497  0cc0 10871  0cn0 12233  ...cfz 13239  Basecbs 16912  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150  DivRingcdr 19991  LModclmod 20123  LVecclvec 20364   freeLMod cfrlm 20953   unitVec cuvc 20989  ℙ𝕣𝕠𝕛ncprjspn 40453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-0g 17152  df-prds 17158  df-pws 17160  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-drng 19993  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lvec 20365  df-sra 20434  df-rgmod 20435  df-nzr 20529  df-dsmm 20939  df-frlm 20954  df-uvc 20990  df-prjsp 40441  df-prjspn 40454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator