MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brne0 Structured version   Visualization version   GIF version

Theorem brne0 5189
Description: If two sets are in a binary relation, the relation cannot be empty. (Contributed by Alexander van der Vekens, 7-Jul-2018.)
Assertion
Ref Expression
brne0 (𝐴𝑅𝐵𝑅 ≠ ∅)

Proof of Theorem brne0
StepHypRef Expression
1 df-br 5140 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 ne0i 4327 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝑅𝑅 ≠ ∅)
31, 2sylbi 216 1 (𝐴𝑅𝐵𝑅 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  wne 2932  c0 4315  cop 4627   class class class wbr 5139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-dif 3944  df-nul 4316  df-br 5140
This theorem is referenced by:  epn0  5576  brfvopabrbr  6986  bropfvvvvlem  8072  brfvimex  43326  brovmptimex  43327  clsneibex  43402  neicvgbex  43412
  Copyright terms: Public domain W3C validator