| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brne0 | Structured version Visualization version GIF version | ||
| Description: If two sets are in a binary relation, the relation cannot be empty. (Contributed by Alexander van der Vekens, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| brne0 | ⊢ (𝐴𝑅𝐵 → 𝑅 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5090 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 2 | ne0i 4288 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 → 𝑅 ≠ ∅) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴𝑅𝐵 → 𝑅 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ≠ wne 2928 ∅c0 4280 〈cop 4579 class class class wbr 5089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-dif 3900 df-nul 4281 df-br 5090 |
| This theorem is referenced by: epn0 5519 brfvopabrbr 6926 bropfvvvvlem 8021 brfvimex 44067 brovmptimex 44068 clsneibex 44143 neicvgbex 44153 |
| Copyright terms: Public domain | W3C validator |