| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brne0 | Structured version Visualization version GIF version | ||
| Description: If two sets are in a binary relation, the relation cannot be empty. (Contributed by Alexander van der Vekens, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| brne0 | ⊢ (𝐴𝑅𝐵 → 𝑅 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5110 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 2 | ne0i 4306 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 → 𝑅 ≠ ∅) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴𝑅𝐵 → 𝑅 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2926 ∅c0 4298 〈cop 4597 class class class wbr 5109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-dif 3919 df-nul 4299 df-br 5110 |
| This theorem is referenced by: epn0 5545 brfvopabrbr 6967 bropfvvvvlem 8072 brfvimex 44008 brovmptimex 44009 clsneibex 44084 neicvgbex 44094 |
| Copyright terms: Public domain | W3C validator |