![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brne0 | Structured version Visualization version GIF version |
Description: If two sets are in a binary relation, the relation cannot be empty. (Contributed by Alexander van der Vekens, 7-Jul-2018.) |
Ref | Expression |
---|---|
brne0 | ⊢ (𝐴𝑅𝐵 → 𝑅 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 4842 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
2 | ne0i 4119 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 → 𝑅 ≠ ∅) | |
3 | 1, 2 | sylbi 209 | 1 ⊢ (𝐴𝑅𝐵 → 𝑅 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 ≠ wne 2969 ∅c0 4113 〈cop 4372 class class class wbr 4841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-v 3385 df-dif 3770 df-nul 4114 df-br 4842 |
This theorem is referenced by: epn0 5228 brfvopabrbr 6502 bropfvvvvlem 7491 brfvimex 39094 brovmptimex 39095 clsneibex 39170 neicvgbex 39180 |
Copyright terms: Public domain | W3C validator |