MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brne0 Structured version   Visualization version   GIF version

Theorem brne0 5124
Description: If two sets are in a binary relation, the relation cannot be empty. (Contributed by Alexander van der Vekens, 7-Jul-2018.)
Assertion
Ref Expression
brne0 (𝐴𝑅𝐵𝑅 ≠ ∅)

Proof of Theorem brne0
StepHypRef Expression
1 df-br 5075 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 ne0i 4268 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝑅𝑅 ≠ ∅)
31, 2sylbi 216 1 (𝐴𝑅𝐵𝑅 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wne 2943  c0 4256  cop 4567   class class class wbr 5074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-dif 3890  df-nul 4257  df-br 5075
This theorem is referenced by:  epn0  5500  brfvopabrbr  6872  bropfvvvvlem  7931  brfvimex  41636  brovmptimex  41637  clsneibex  41712  neicvgbex  41722
  Copyright terms: Public domain W3C validator