![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brne0 | Structured version Visualization version GIF version |
Description: If two sets are in a binary relation, the relation cannot be empty. (Contributed by Alexander van der Vekens, 7-Jul-2018.) |
Ref | Expression |
---|---|
brne0 | ⊢ (𝐴𝑅𝐵 → 𝑅 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5167 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
2 | ne0i 4364 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 → 𝑅 ≠ ∅) | |
3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴𝑅𝐵 → 𝑅 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 〈cop 4654 class class class wbr 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-dif 3979 df-nul 4353 df-br 5167 |
This theorem is referenced by: epn0 5604 brfvopabrbr 7026 bropfvvvvlem 8132 brfvimex 43988 brovmptimex 43989 clsneibex 44064 neicvgbex 44074 |
Copyright terms: Public domain | W3C validator |