| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brne0 | Structured version Visualization version GIF version | ||
| Description: If two sets are in a binary relation, the relation cannot be empty. (Contributed by Alexander van der Vekens, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| brne0 | ⊢ (𝐴𝑅𝐵 → 𝑅 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5124 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 2 | ne0i 4321 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 → 𝑅 ≠ ∅) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴𝑅𝐵 → 𝑅 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ≠ wne 2931 ∅c0 4313 〈cop 4612 class class class wbr 5123 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-dif 3934 df-nul 4314 df-br 5124 |
| This theorem is referenced by: epn0 5569 brfvopabrbr 6993 bropfvvvvlem 8098 brfvimex 44001 brovmptimex 44002 clsneibex 44077 neicvgbex 44087 |
| Copyright terms: Public domain | W3C validator |