![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brne0 | Structured version Visualization version GIF version |
Description: If two sets are in a binary relation, the relation cannot be empty. (Contributed by Alexander van der Vekens, 7-Jul-2018.) |
Ref | Expression |
---|---|
brne0 | ⊢ (𝐴𝑅𝐵 → 𝑅 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5140 | . 2 ⊢ (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅) | |
2 | ne0i 4327 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ 𝑅 → 𝑅 ≠ ∅) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (𝐴𝑅𝐵 → 𝑅 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ≠ wne 2932 ∅c0 4315 ⟨cop 4627 class class class wbr 5139 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-dif 3944 df-nul 4316 df-br 5140 |
This theorem is referenced by: epn0 5576 brfvopabrbr 6986 bropfvvvvlem 8072 brfvimex 43326 brovmptimex 43327 clsneibex 43402 neicvgbex 43412 |
Copyright terms: Public domain | W3C validator |