![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brne0 | Structured version Visualization version GIF version |
Description: If two sets are in a binary relation, the relation cannot be empty. (Contributed by Alexander van der Vekens, 7-Jul-2018.) |
Ref | Expression |
---|---|
brne0 | ⊢ (𝐴𝑅𝐵 → 𝑅 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5148 | . 2 ⊢ (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅) | |
2 | ne0i 4333 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ 𝑅 → 𝑅 ≠ ∅) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (𝐴𝑅𝐵 → 𝑅 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ≠ wne 2940 ∅c0 4321 ⟨cop 4633 class class class wbr 5147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-dif 3950 df-nul 4322 df-br 5148 |
This theorem is referenced by: epn0 5584 brfvopabrbr 6992 bropfvvvvlem 8073 brfvimex 42762 brovmptimex 42763 clsneibex 42838 neicvgbex 42848 |
Copyright terms: Public domain | W3C validator |