![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brfvopabrbr | Structured version Visualization version GIF version |
Description: The binary relation of a function value which is an ordered-pair class abstraction of a restricted binary relation is the restricted binary relation. The first hypothesis can often be obtained by using fvmptopab 7504. (Contributed by AV, 29-Oct-2021.) |
Ref | Expression |
---|---|
brfvopabrbr.1 | ⊢ (𝐴‘𝑍) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝐵‘𝑍)𝑦 ∧ 𝜑)} |
brfvopabrbr.2 | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) |
brfvopabrbr.3 | ⊢ Rel (𝐵‘𝑍) |
Ref | Expression |
---|---|
brfvopabrbr | ⊢ (𝑋(𝐴‘𝑍)𝑌 ↔ (𝑋(𝐵‘𝑍)𝑌 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brne0 5216 | . . . 4 ⊢ (𝑋(𝐴‘𝑍)𝑌 → (𝐴‘𝑍) ≠ ∅) | |
2 | fvprc 6912 | . . . . 5 ⊢ (¬ 𝑍 ∈ V → (𝐴‘𝑍) = ∅) | |
3 | 2 | necon1ai 2974 | . . . 4 ⊢ ((𝐴‘𝑍) ≠ ∅ → 𝑍 ∈ V) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝑋(𝐴‘𝑍)𝑌 → 𝑍 ∈ V) |
5 | brfvopabrbr.1 | . . . . 5 ⊢ (𝐴‘𝑍) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝐵‘𝑍)𝑦 ∧ 𝜑)} | |
6 | 5 | relopabiv 5844 | . . . 4 ⊢ Rel (𝐴‘𝑍) |
7 | 6 | brrelex1i 5756 | . . 3 ⊢ (𝑋(𝐴‘𝑍)𝑌 → 𝑋 ∈ V) |
8 | 6 | brrelex2i 5757 | . . 3 ⊢ (𝑋(𝐴‘𝑍)𝑌 → 𝑌 ∈ V) |
9 | 4, 7, 8 | 3jca 1128 | . 2 ⊢ (𝑋(𝐴‘𝑍)𝑌 → (𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V)) |
10 | brne0 5216 | . . . . 5 ⊢ (𝑋(𝐵‘𝑍)𝑌 → (𝐵‘𝑍) ≠ ∅) | |
11 | fvprc 6912 | . . . . . 6 ⊢ (¬ 𝑍 ∈ V → (𝐵‘𝑍) = ∅) | |
12 | 11 | necon1ai 2974 | . . . . 5 ⊢ ((𝐵‘𝑍) ≠ ∅ → 𝑍 ∈ V) |
13 | 10, 12 | syl 17 | . . . 4 ⊢ (𝑋(𝐵‘𝑍)𝑌 → 𝑍 ∈ V) |
14 | brfvopabrbr.3 | . . . . 5 ⊢ Rel (𝐵‘𝑍) | |
15 | 14 | brrelex1i 5756 | . . . 4 ⊢ (𝑋(𝐵‘𝑍)𝑌 → 𝑋 ∈ V) |
16 | 14 | brrelex2i 5757 | . . . 4 ⊢ (𝑋(𝐵‘𝑍)𝑌 → 𝑌 ∈ V) |
17 | 13, 15, 16 | 3jca 1128 | . . 3 ⊢ (𝑋(𝐵‘𝑍)𝑌 → (𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V)) |
18 | 17 | adantr 480 | . 2 ⊢ ((𝑋(𝐵‘𝑍)𝑌 ∧ 𝜓) → (𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V)) |
19 | 5 | a1i 11 | . . 3 ⊢ (𝑍 ∈ V → (𝐴‘𝑍) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝐵‘𝑍)𝑦 ∧ 𝜑)}) |
20 | brfvopabrbr.2 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) | |
21 | 19, 20 | rbropap 5584 | . 2 ⊢ ((𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋(𝐴‘𝑍)𝑌 ↔ (𝑋(𝐵‘𝑍)𝑌 ∧ 𝜓))) |
22 | 9, 18, 21 | pm5.21nii 378 | 1 ⊢ (𝑋(𝐴‘𝑍)𝑌 ↔ (𝑋(𝐵‘𝑍)𝑌 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ∅c0 4352 class class class wbr 5166 {copab 5228 Rel wrel 5705 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-iota 6525 df-fv 6581 |
This theorem is referenced by: istrl 29732 ispth 29759 isspth 29760 isclwlk 29809 iscrct 29826 iscycl 29827 iseupth 30233 |
Copyright terms: Public domain | W3C validator |