MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brfvopabrbr Structured version   Visualization version   GIF version

Theorem brfvopabrbr 6996
Description: The binary relation of a function value which is an ordered-pair class abstraction of a restricted binary relation is the restricted binary relation. The first hypothesis can often be obtained by using fvmptopab 7468. (Contributed by AV, 29-Oct-2021.)
Hypotheses
Ref Expression
brfvopabrbr.1 (𝐴𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐵𝑍)𝑦𝜑)}
brfvopabrbr.2 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝜑𝜓))
brfvopabrbr.3 Rel (𝐵𝑍)
Assertion
Ref Expression
brfvopabrbr (𝑋(𝐴𝑍)𝑌 ↔ (𝑋(𝐵𝑍)𝑌𝜓))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝑍,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem brfvopabrbr
StepHypRef Expression
1 brne0 5192 . . . 4 (𝑋(𝐴𝑍)𝑌 → (𝐴𝑍) ≠ ∅)
2 fvprc 6883 . . . . 5 𝑍 ∈ V → (𝐴𝑍) = ∅)
32necon1ai 2963 . . . 4 ((𝐴𝑍) ≠ ∅ → 𝑍 ∈ V)
41, 3syl 17 . . 3 (𝑋(𝐴𝑍)𝑌𝑍 ∈ V)
5 brfvopabrbr.1 . . . . 5 (𝐴𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐵𝑍)𝑦𝜑)}
65relopabiv 5816 . . . 4 Rel (𝐴𝑍)
76brrelex1i 5728 . . 3 (𝑋(𝐴𝑍)𝑌𝑋 ∈ V)
86brrelex2i 5729 . . 3 (𝑋(𝐴𝑍)𝑌𝑌 ∈ V)
94, 7, 83jca 1126 . 2 (𝑋(𝐴𝑍)𝑌 → (𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V))
10 brne0 5192 . . . . 5 (𝑋(𝐵𝑍)𝑌 → (𝐵𝑍) ≠ ∅)
11 fvprc 6883 . . . . . 6 𝑍 ∈ V → (𝐵𝑍) = ∅)
1211necon1ai 2963 . . . . 5 ((𝐵𝑍) ≠ ∅ → 𝑍 ∈ V)
1310, 12syl 17 . . . 4 (𝑋(𝐵𝑍)𝑌𝑍 ∈ V)
14 brfvopabrbr.3 . . . . 5 Rel (𝐵𝑍)
1514brrelex1i 5728 . . . 4 (𝑋(𝐵𝑍)𝑌𝑋 ∈ V)
1614brrelex2i 5729 . . . 4 (𝑋(𝐵𝑍)𝑌𝑌 ∈ V)
1713, 15, 163jca 1126 . . 3 (𝑋(𝐵𝑍)𝑌 → (𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V))
1817adantr 480 . 2 ((𝑋(𝐵𝑍)𝑌𝜓) → (𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V))
195a1i 11 . . 3 (𝑍 ∈ V → (𝐴𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐵𝑍)𝑦𝜑)})
20 brfvopabrbr.2 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝜑𝜓))
2119, 20rbropap 5561 . 2 ((𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋(𝐴𝑍)𝑌 ↔ (𝑋(𝐵𝑍)𝑌𝜓)))
229, 18, 21pm5.21nii 378 1 (𝑋(𝐴𝑍)𝑌 ↔ (𝑋(𝐵𝑍)𝑌𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2935  Vcvv 3469  c0 4318   class class class wbr 5142  {copab 5204  Rel wrel 5677  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-xp 5678  df-rel 5679  df-iota 6494  df-fv 6550
This theorem is referenced by:  istrl  29484  ispth  29511  isspth  29512  isclwlk  29561  iscrct  29578  iscycl  29579  iseupth  29985
  Copyright terms: Public domain W3C validator