Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brfvopabrbr | Structured version Visualization version GIF version |
Description: The binary relation of a function value which is an ordered-pair class abstraction of a restricted binary relation is the restricted binary relation. The first hypothesis can often be obtained by using fvmptopab 7329. (Contributed by AV, 29-Oct-2021.) |
Ref | Expression |
---|---|
brfvopabrbr.1 | ⊢ (𝐴‘𝑍) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝐵‘𝑍)𝑦 ∧ 𝜑)} |
brfvopabrbr.2 | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) |
brfvopabrbr.3 | ⊢ Rel (𝐵‘𝑍) |
Ref | Expression |
---|---|
brfvopabrbr | ⊢ (𝑋(𝐴‘𝑍)𝑌 ↔ (𝑋(𝐵‘𝑍)𝑌 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brne0 5124 | . . . 4 ⊢ (𝑋(𝐴‘𝑍)𝑌 → (𝐴‘𝑍) ≠ ∅) | |
2 | fvprc 6766 | . . . . 5 ⊢ (¬ 𝑍 ∈ V → (𝐴‘𝑍) = ∅) | |
3 | 2 | necon1ai 2971 | . . . 4 ⊢ ((𝐴‘𝑍) ≠ ∅ → 𝑍 ∈ V) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝑋(𝐴‘𝑍)𝑌 → 𝑍 ∈ V) |
5 | brfvopabrbr.1 | . . . . 5 ⊢ (𝐴‘𝑍) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝐵‘𝑍)𝑦 ∧ 𝜑)} | |
6 | 5 | relopabiv 5730 | . . . 4 ⊢ Rel (𝐴‘𝑍) |
7 | 6 | brrelex1i 5643 | . . 3 ⊢ (𝑋(𝐴‘𝑍)𝑌 → 𝑋 ∈ V) |
8 | 6 | brrelex2i 5644 | . . 3 ⊢ (𝑋(𝐴‘𝑍)𝑌 → 𝑌 ∈ V) |
9 | 4, 7, 8 | 3jca 1127 | . 2 ⊢ (𝑋(𝐴‘𝑍)𝑌 → (𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V)) |
10 | brne0 5124 | . . . . 5 ⊢ (𝑋(𝐵‘𝑍)𝑌 → (𝐵‘𝑍) ≠ ∅) | |
11 | fvprc 6766 | . . . . . 6 ⊢ (¬ 𝑍 ∈ V → (𝐵‘𝑍) = ∅) | |
12 | 11 | necon1ai 2971 | . . . . 5 ⊢ ((𝐵‘𝑍) ≠ ∅ → 𝑍 ∈ V) |
13 | 10, 12 | syl 17 | . . . 4 ⊢ (𝑋(𝐵‘𝑍)𝑌 → 𝑍 ∈ V) |
14 | brfvopabrbr.3 | . . . . 5 ⊢ Rel (𝐵‘𝑍) | |
15 | 14 | brrelex1i 5643 | . . . 4 ⊢ (𝑋(𝐵‘𝑍)𝑌 → 𝑋 ∈ V) |
16 | 14 | brrelex2i 5644 | . . . 4 ⊢ (𝑋(𝐵‘𝑍)𝑌 → 𝑌 ∈ V) |
17 | 13, 15, 16 | 3jca 1127 | . . 3 ⊢ (𝑋(𝐵‘𝑍)𝑌 → (𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V)) |
18 | 17 | adantr 481 | . 2 ⊢ ((𝑋(𝐵‘𝑍)𝑌 ∧ 𝜓) → (𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V)) |
19 | 5 | a1i 11 | . . 3 ⊢ (𝑍 ∈ V → (𝐴‘𝑍) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝐵‘𝑍)𝑦 ∧ 𝜑)}) |
20 | brfvopabrbr.2 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) | |
21 | 19, 20 | rbropap 5478 | . 2 ⊢ ((𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋(𝐴‘𝑍)𝑌 ↔ (𝑋(𝐵‘𝑍)𝑌 ∧ 𝜓))) |
22 | 9, 18, 21 | pm5.21nii 380 | 1 ⊢ (𝑋(𝐴‘𝑍)𝑌 ↔ (𝑋(𝐵‘𝑍)𝑌 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ∅c0 4256 class class class wbr 5074 {copab 5136 Rel wrel 5594 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-iota 6391 df-fv 6441 |
This theorem is referenced by: istrl 28064 ispth 28091 isspth 28092 isclwlk 28141 iscrct 28158 iscycl 28159 iseupth 28565 |
Copyright terms: Public domain | W3C validator |