![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brfvopabrbr | Structured version Visualization version GIF version |
Description: The binary relation of a function value which is an ordered-pair class abstraction of a restricted binary relation is the restricted binary relation. The first hypothesis can often be obtained by using fvmptopab 7470. (Contributed by AV, 29-Oct-2021.) |
Ref | Expression |
---|---|
brfvopabrbr.1 | ⊢ (𝐴‘𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐵‘𝑍)𝑦 ∧ 𝜑)} |
brfvopabrbr.2 | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) |
brfvopabrbr.3 | ⊢ Rel (𝐵‘𝑍) |
Ref | Expression |
---|---|
brfvopabrbr | ⊢ (𝑋(𝐴‘𝑍)𝑌 ↔ (𝑋(𝐵‘𝑍)𝑌 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brne0 5193 | . . . 4 ⊢ (𝑋(𝐴‘𝑍)𝑌 → (𝐴‘𝑍) ≠ ∅) | |
2 | fvprc 6883 | . . . . 5 ⊢ (¬ 𝑍 ∈ V → (𝐴‘𝑍) = ∅) | |
3 | 2 | necon1ai 2958 | . . . 4 ⊢ ((𝐴‘𝑍) ≠ ∅ → 𝑍 ∈ V) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝑋(𝐴‘𝑍)𝑌 → 𝑍 ∈ V) |
5 | brfvopabrbr.1 | . . . . 5 ⊢ (𝐴‘𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐵‘𝑍)𝑦 ∧ 𝜑)} | |
6 | 5 | relopabiv 5816 | . . . 4 ⊢ Rel (𝐴‘𝑍) |
7 | 6 | brrelex1i 5728 | . . 3 ⊢ (𝑋(𝐴‘𝑍)𝑌 → 𝑋 ∈ V) |
8 | 6 | brrelex2i 5729 | . . 3 ⊢ (𝑋(𝐴‘𝑍)𝑌 → 𝑌 ∈ V) |
9 | 4, 7, 8 | 3jca 1125 | . 2 ⊢ (𝑋(𝐴‘𝑍)𝑌 → (𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V)) |
10 | brne0 5193 | . . . . 5 ⊢ (𝑋(𝐵‘𝑍)𝑌 → (𝐵‘𝑍) ≠ ∅) | |
11 | fvprc 6883 | . . . . . 6 ⊢ (¬ 𝑍 ∈ V → (𝐵‘𝑍) = ∅) | |
12 | 11 | necon1ai 2958 | . . . . 5 ⊢ ((𝐵‘𝑍) ≠ ∅ → 𝑍 ∈ V) |
13 | 10, 12 | syl 17 | . . . 4 ⊢ (𝑋(𝐵‘𝑍)𝑌 → 𝑍 ∈ V) |
14 | brfvopabrbr.3 | . . . . 5 ⊢ Rel (𝐵‘𝑍) | |
15 | 14 | brrelex1i 5728 | . . . 4 ⊢ (𝑋(𝐵‘𝑍)𝑌 → 𝑋 ∈ V) |
16 | 14 | brrelex2i 5729 | . . . 4 ⊢ (𝑋(𝐵‘𝑍)𝑌 → 𝑌 ∈ V) |
17 | 13, 15, 16 | 3jca 1125 | . . 3 ⊢ (𝑋(𝐵‘𝑍)𝑌 → (𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V)) |
18 | 17 | adantr 479 | . 2 ⊢ ((𝑋(𝐵‘𝑍)𝑌 ∧ 𝜓) → (𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V)) |
19 | 5 | a1i 11 | . . 3 ⊢ (𝑍 ∈ V → (𝐴‘𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐵‘𝑍)𝑦 ∧ 𝜑)}) |
20 | brfvopabrbr.2 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) | |
21 | 19, 20 | rbropap 5561 | . 2 ⊢ ((𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋(𝐴‘𝑍)𝑌 ↔ (𝑋(𝐵‘𝑍)𝑌 ∧ 𝜓))) |
22 | 9, 18, 21 | pm5.21nii 377 | 1 ⊢ (𝑋(𝐴‘𝑍)𝑌 ↔ (𝑋(𝐵‘𝑍)𝑌 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 Vcvv 3463 ∅c0 4318 class class class wbr 5143 {copab 5205 Rel wrel 5677 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3943 df-un 3945 df-ss 3957 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-xp 5678 df-rel 5679 df-iota 6494 df-fv 6550 |
This theorem is referenced by: istrl 29552 ispth 29579 isspth 29580 isclwlk 29629 iscrct 29646 iscycl 29647 iseupth 30053 |
Copyright terms: Public domain | W3C validator |