MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brfvopabrbr Structured version   Visualization version   GIF version

Theorem brfvopabrbr 7013
Description: The binary relation of a function value which is an ordered-pair class abstraction of a restricted binary relation is the restricted binary relation. The first hypothesis can often be obtained by using fvmptopab 7487. (Contributed by AV, 29-Oct-2021.)
Hypotheses
Ref Expression
brfvopabrbr.1 (𝐴𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐵𝑍)𝑦𝜑)}
brfvopabrbr.2 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝜑𝜓))
brfvopabrbr.3 Rel (𝐵𝑍)
Assertion
Ref Expression
brfvopabrbr (𝑋(𝐴𝑍)𝑌 ↔ (𝑋(𝐵𝑍)𝑌𝜓))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝑍,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem brfvopabrbr
StepHypRef Expression
1 brne0 5193 . . . 4 (𝑋(𝐴𝑍)𝑌 → (𝐴𝑍) ≠ ∅)
2 fvprc 6898 . . . . 5 𝑍 ∈ V → (𝐴𝑍) = ∅)
32necon1ai 2968 . . . 4 ((𝐴𝑍) ≠ ∅ → 𝑍 ∈ V)
41, 3syl 17 . . 3 (𝑋(𝐴𝑍)𝑌𝑍 ∈ V)
5 brfvopabrbr.1 . . . . 5 (𝐴𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐵𝑍)𝑦𝜑)}
65relopabiv 5830 . . . 4 Rel (𝐴𝑍)
76brrelex1i 5741 . . 3 (𝑋(𝐴𝑍)𝑌𝑋 ∈ V)
86brrelex2i 5742 . . 3 (𝑋(𝐴𝑍)𝑌𝑌 ∈ V)
94, 7, 83jca 1129 . 2 (𝑋(𝐴𝑍)𝑌 → (𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V))
10 brne0 5193 . . . . 5 (𝑋(𝐵𝑍)𝑌 → (𝐵𝑍) ≠ ∅)
11 fvprc 6898 . . . . . 6 𝑍 ∈ V → (𝐵𝑍) = ∅)
1211necon1ai 2968 . . . . 5 ((𝐵𝑍) ≠ ∅ → 𝑍 ∈ V)
1310, 12syl 17 . . . 4 (𝑋(𝐵𝑍)𝑌𝑍 ∈ V)
14 brfvopabrbr.3 . . . . 5 Rel (𝐵𝑍)
1514brrelex1i 5741 . . . 4 (𝑋(𝐵𝑍)𝑌𝑋 ∈ V)
1614brrelex2i 5742 . . . 4 (𝑋(𝐵𝑍)𝑌𝑌 ∈ V)
1713, 15, 163jca 1129 . . 3 (𝑋(𝐵𝑍)𝑌 → (𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V))
1817adantr 480 . 2 ((𝑋(𝐵𝑍)𝑌𝜓) → (𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V))
195a1i 11 . . 3 (𝑍 ∈ V → (𝐴𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐵𝑍)𝑦𝜑)})
20 brfvopabrbr.2 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝜑𝜓))
2119, 20rbropap 5570 . 2 ((𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋(𝐴𝑍)𝑌 ↔ (𝑋(𝐵𝑍)𝑌𝜓)))
229, 18, 21pm5.21nii 378 1 (𝑋(𝐴𝑍)𝑌 ↔ (𝑋(𝐵𝑍)𝑌𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  Vcvv 3480  c0 4333   class class class wbr 5143  {copab 5205  Rel wrel 5690  cfv 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-iota 6514  df-fv 6569
This theorem is referenced by:  istrl  29714  ispth  29741  isspth  29742  isclwlk  29793  iscrct  29810  iscycl  29811  iseupth  30220
  Copyright terms: Public domain W3C validator