Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > epn0 | Structured version Visualization version GIF version |
Description: The membership relation is nonempty. (Contributed by AV, 19-Jun-2022.) |
Ref | Expression |
---|---|
epn0 | ⊢ E ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0sn0ep 5498 | . 2 ⊢ ∅ E {∅} | |
2 | brne0 5128 | . 2 ⊢ (∅ E {∅} → E ≠ ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ E ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2944 ∅c0 4261 {csn 4566 class class class wbr 5078 E cep 5493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-eprel 5494 |
This theorem is referenced by: epnsym 9328 |
Copyright terms: Public domain | W3C validator |