MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epn0 Structured version   Visualization version   GIF version

Theorem epn0 5490
Description: The membership relation is nonempty. (Contributed by AV, 19-Jun-2022.)
Assertion
Ref Expression
epn0 E ≠ ∅

Proof of Theorem epn0
StepHypRef Expression
1 0sn0ep 5489 . 2 ∅ E {∅}
2 brne0 5120 . 2 (∅ E {∅} → E ≠ ∅)
31, 2ax-mp 5 1 E ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wne 2943  c0 4254  {csn 4558   class class class wbr 5070   E cep 5484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-ne 2944  df-rab 3073  df-v 3425  df-dif 3887  df-un 3889  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-eprel 5485
This theorem is referenced by:  epnsym  9272
  Copyright terms: Public domain W3C validator