MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epn0 Structured version   Visualization version   GIF version

Theorem epn0 5589
Description: The membership relation is nonempty. (Contributed by AV, 19-Jun-2022.)
Assertion
Ref Expression
epn0 E ≠ ∅

Proof of Theorem epn0
StepHypRef Expression
1 0sn0ep 5588 . 2 ∅ E {∅}
2 brne0 5193 . 2 (∅ E {∅} → E ≠ ∅)
31, 2ax-mp 5 1 E ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wne 2940  c0 4333  {csn 4626   class class class wbr 5143   E cep 5583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-eprel 5584
This theorem is referenced by:  epnsym  9649
  Copyright terms: Public domain W3C validator