Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  epn0 Structured version   Visualization version   GIF version

Theorem epn0 5464
 Description: The membership relation is nonempty. (Contributed by AV, 19-Jun-2022.)
Assertion
Ref Expression
epn0 E ≠ ∅

Proof of Theorem epn0
StepHypRef Expression
1 0sn0ep 5463 . 2 ∅ E {∅}
2 brne0 5107 . 2 (∅ E {∅} → E ≠ ∅)
31, 2ax-mp 5 1 E ≠ ∅
 Colors of variables: wff setvar class Syntax hints:   ≠ wne 3014  ∅c0 4289  {csn 4559   class class class wbr 5057   E cep 5457 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-rab 3145  df-v 3495  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-br 5058  df-opab 5120  df-eprel 5458 This theorem is referenced by:  epnsym  9064
 Copyright terms: Public domain W3C validator