| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epn0 | Structured version Visualization version GIF version | ||
| Description: The membership relation is nonempty. (Contributed by AV, 19-Jun-2022.) |
| Ref | Expression |
|---|---|
| epn0 | ⊢ E ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0sn0ep 5523 | . 2 ⊢ ∅ E {∅} | |
| 2 | brne0 5143 | . 2 ⊢ (∅ E {∅} → E ≠ ∅) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ E ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2929 ∅c0 4282 {csn 4575 class class class wbr 5093 E cep 5518 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-eprel 5519 |
| This theorem is referenced by: epnsym 9506 |
| Copyright terms: Public domain | W3C validator |