Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > epn0 | Structured version Visualization version GIF version |
Description: The membership relation is nonempty. (Contributed by AV, 19-Jun-2022.) |
Ref | Expression |
---|---|
epn0 | ⊢ E ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0sn0ep 5489 | . 2 ⊢ ∅ E {∅} | |
2 | brne0 5120 | . 2 ⊢ (∅ E {∅} → E ≠ ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ E ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2943 ∅c0 4254 {csn 4558 class class class wbr 5070 E cep 5484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-ne 2944 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-eprel 5485 |
This theorem is referenced by: epnsym 9272 |
Copyright terms: Public domain | W3C validator |