| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brun | Structured version Visualization version GIF version | ||
| Description: The union of two binary relations. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| brun | ⊢ (𝐴(𝑅 ∪ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∨ 𝐴𝑆𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 4128 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ∪ 𝑆) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∨ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
| 2 | df-br 5120 | . 2 ⊢ (𝐴(𝑅 ∪ 𝑆)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑅 ∪ 𝑆)) | |
| 3 | df-br 5120 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 4 | df-br 5120 | . . 3 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
| 5 | 3, 4 | orbi12i 914 | . 2 ⊢ ((𝐴𝑅𝐵 ∨ 𝐴𝑆𝐵) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∨ 〈𝐴, 𝐵〉 ∈ 𝑆)) |
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (𝐴(𝑅 ∪ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∨ 𝐴𝑆𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∈ wcel 2108 ∪ cun 3924 〈cop 4607 class class class wbr 5119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-br 5120 |
| This theorem is referenced by: dmun 5890 qfto 6110 poleloe 6120 cnvun 6131 coundi 6236 coundir 6237 fununmo 6582 eqfunresadj 7352 brdifun 8747 fpwwe2lem12 10654 ltxrlt 11303 ltxr 13129 dfle2 13161 brprop 32620 satfbrsuc 35334 dfso2 35718 dfon3 35856 brcup 35903 dfrdg4 35915 dffrege99 43933 |
| Copyright terms: Public domain | W3C validator |