MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brun Structured version   Visualization version   GIF version

Theorem brun 5158
Description: The union of two binary relations. (Contributed by NM, 21-Dec-2008.)
Assertion
Ref Expression
brun (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐴𝑆𝐵))

Proof of Theorem brun
StepHypRef Expression
1 elun 4116 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝑅𝑆) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ∨ ⟨𝐴, 𝐵⟩ ∈ 𝑆))
2 df-br 5108 . 2 (𝐴(𝑅𝑆)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑅𝑆))
3 df-br 5108 . . 3 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
4 df-br 5108 . . 3 (𝐴𝑆𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑆)
53, 4orbi12i 914 . 2 ((𝐴𝑅𝐵𝐴𝑆𝐵) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ∨ ⟨𝐴, 𝐵⟩ ∈ 𝑆))
61, 2, 53bitr4i 303 1 (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐴𝑆𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847  wcel 2109  cun 3912  cop 4595   class class class wbr 5107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-un 3919  df-br 5108
This theorem is referenced by:  dmun  5874  qfto  6094  poleloe  6104  cnvun  6115  coundi  6220  coundir  6221  fununmo  6563  eqfunresadj  7335  brdifun  8701  fpwwe2lem12  10595  ltxrlt  11244  ltxr  13075  dfle2  13107  brprop  32620  satfbrsuc  35353  dfso2  35742  dfon3  35880  brcup  35927  dfrdg4  35939  dffrege99  43951
  Copyright terms: Public domain W3C validator