Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brun | Structured version Visualization version GIF version |
Description: The union of two binary relations. (Contributed by NM, 21-Dec-2008.) |
Ref | Expression |
---|---|
brun | ⊢ (𝐴(𝑅 ∪ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∨ 𝐴𝑆𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 4079 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ∪ 𝑆) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∨ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
2 | df-br 5071 | . 2 ⊢ (𝐴(𝑅 ∪ 𝑆)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑅 ∪ 𝑆)) | |
3 | df-br 5071 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
4 | df-br 5071 | . . 3 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
5 | 3, 4 | orbi12i 911 | . 2 ⊢ ((𝐴𝑅𝐵 ∨ 𝐴𝑆𝐵) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∨ 〈𝐴, 𝐵〉 ∈ 𝑆)) |
6 | 1, 2, 5 | 3bitr4i 302 | 1 ⊢ (𝐴(𝑅 ∪ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∨ 𝐴𝑆𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 843 ∈ wcel 2108 ∪ cun 3881 〈cop 4564 class class class wbr 5070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-br 5071 |
This theorem is referenced by: dmun 5808 qfto 6015 poleloe 6025 cnvun 6035 coundi 6140 coundir 6141 fununmo 6465 brdifun 8485 fpwwe2lem12 10329 ltxrlt 10976 ltxr 12780 dfle2 12810 brprop 30932 satfbrsuc 33228 dfso2 33628 eqfunresadj 33641 dfon3 34121 brcup 34168 dfrdg4 34180 dffrege99 41459 |
Copyright terms: Public domain | W3C validator |