| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brun | Structured version Visualization version GIF version | ||
| Description: The union of two binary relations. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| brun | ⊢ (𝐴(𝑅 ∪ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∨ 𝐴𝑆𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 4103 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ∪ 𝑆) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∨ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
| 2 | df-br 5092 | . 2 ⊢ (𝐴(𝑅 ∪ 𝑆)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑅 ∪ 𝑆)) | |
| 3 | df-br 5092 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 4 | df-br 5092 | . . 3 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
| 5 | 3, 4 | orbi12i 914 | . 2 ⊢ ((𝐴𝑅𝐵 ∨ 𝐴𝑆𝐵) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∨ 〈𝐴, 𝐵〉 ∈ 𝑆)) |
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (𝐴(𝑅 ∪ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∨ 𝐴𝑆𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∈ wcel 2111 ∪ cun 3900 〈cop 4582 class class class wbr 5091 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-br 5092 |
| This theorem is referenced by: dmun 5850 qfto 6068 poleloe 6078 cnvun 6089 coundi 6194 coundir 6195 fununmo 6528 eqfunresadj 7294 brdifun 8652 fpwwe2lem12 10530 ltxrlt 11180 ltxr 13011 dfle2 13043 brprop 32673 satfbrsuc 35398 dfso2 35787 dfon3 35925 brcup 35972 dfrdg4 35984 dffrege99 43994 |
| Copyright terms: Public domain | W3C validator |