![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brun | Structured version Visualization version GIF version |
Description: The union of two binary relations. (Contributed by NM, 21-Dec-2008.) |
Ref | Expression |
---|---|
brun | ⊢ (𝐴(𝑅 ∪ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∨ 𝐴𝑆𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 4149 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝑅 ∪ 𝑆) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ∨ ⟨𝐴, 𝐵⟩ ∈ 𝑆)) | |
2 | df-br 5150 | . 2 ⊢ (𝐴(𝑅 ∪ 𝑆)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑅 ∪ 𝑆)) | |
3 | df-br 5150 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅) | |
4 | df-br 5150 | . . 3 ⊢ (𝐴𝑆𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑆) | |
5 | 3, 4 | orbi12i 911 | . 2 ⊢ ((𝐴𝑅𝐵 ∨ 𝐴𝑆𝐵) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ∨ ⟨𝐴, 𝐵⟩ ∈ 𝑆)) |
6 | 1, 2, 5 | 3bitr4i 302 | 1 ⊢ (𝐴(𝑅 ∪ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∨ 𝐴𝑆𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 843 ∈ wcel 2104 ∪ cun 3947 ⟨cop 4635 class class class wbr 5149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-un 3954 df-br 5150 |
This theorem is referenced by: dmun 5911 qfto 6123 poleloe 6133 cnvun 6143 coundi 6247 coundir 6248 fununmo 6596 eqfunresadj 7361 brdifun 8736 fpwwe2lem12 10641 ltxrlt 11290 ltxr 13101 dfle2 13132 brprop 32184 satfbrsuc 34653 dfso2 35027 dfon3 35166 brcup 35213 dfrdg4 35225 dffrege99 43017 |
Copyright terms: Public domain | W3C validator |