MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brun Structured version   Visualization version   GIF version

Theorem brun 5083
Description: The union of two binary relations. (Contributed by NM, 21-Dec-2008.)
Assertion
Ref Expression
brun (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐴𝑆𝐵))

Proof of Theorem brun
StepHypRef Expression
1 elun 4054 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝑅𝑆) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ∨ ⟨𝐴, 𝐵⟩ ∈ 𝑆))
2 df-br 5033 . 2 (𝐴(𝑅𝑆)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑅𝑆))
3 df-br 5033 . . 3 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
4 df-br 5033 . . 3 (𝐴𝑆𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑆)
53, 4orbi12i 912 . 2 ((𝐴𝑅𝐵𝐴𝑆𝐵) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ∨ ⟨𝐴, 𝐵⟩ ∈ 𝑆))
61, 2, 53bitr4i 306 1 (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐴𝑆𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wo 844  wcel 2111  cun 3856  cop 4528   class class class wbr 5032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2729
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-v 3411  df-un 3863  df-br 5033
This theorem is referenced by:  dmun  5750  qfto  5953  poleloe  5963  cnvun  5973  coundi  6077  coundir  6078  fununmo  6382  brdifun  8328  fpwwe2lem12  10102  ltxrlt  10749  ltxr  12551  dfle2  12581  brprop  30554  satfbrsuc  32844  dfso2  33237  eqfunresadj  33251  dfon3  33743  brcup  33790  dfrdg4  33802  dffrege99  41036
  Copyright terms: Public domain W3C validator