Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > caovcanrd | Structured version Visualization version GIF version |
Description: Commute the arguments of an operation cancellation law. (Contributed by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
caovcang.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧)) |
caovcand.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑇) |
caovcand.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
caovcand.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
caovcanrd.5 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
caovcanrd.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
Ref | Expression |
---|---|
caovcanrd | ⊢ (𝜑 → ((𝐵𝐹𝐴) = (𝐶𝐹𝐴) ↔ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovcanrd.6 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) | |
2 | caovcanrd.5 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
3 | caovcand.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
4 | 1, 2, 3 | caovcomd 7404 | . . 3 ⊢ (𝜑 → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)) |
5 | caovcand.4 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
6 | 1, 2, 5 | caovcomd 7404 | . . 3 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐶𝐹𝐴)) |
7 | 4, 6 | eqeq12d 2753 | . 2 ⊢ (𝜑 → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ (𝐵𝐹𝐴) = (𝐶𝐹𝐴))) |
8 | caovcang.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧)) | |
9 | caovcand.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑇) | |
10 | 8, 9, 3, 5 | caovcand 7410 | . 2 ⊢ (𝜑 → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ 𝐵 = 𝐶)) |
11 | 7, 10 | bitr3d 284 | 1 ⊢ (𝜑 → ((𝐵𝐹𝐴) = (𝐶𝐹𝐴) ↔ 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 (class class class)co 7213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-iota 6338 df-fv 6388 df-ov 7216 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |