MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovcanrd Structured version   Visualization version   GIF version

Theorem caovcanrd 7557
Description: Commute the arguments of an operation cancellation law. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovcang.1 ((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))
caovcand.2 (𝜑𝐴𝑇)
caovcand.3 (𝜑𝐵𝑆)
caovcand.4 (𝜑𝐶𝑆)
caovcanrd.5 (𝜑𝐴𝑆)
caovcanrd.6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
Assertion
Ref Expression
caovcanrd (𝜑 → ((𝐵𝐹𝐴) = (𝐶𝐹𝐴) ↔ 𝐵 = 𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧

Proof of Theorem caovcanrd
StepHypRef Expression
1 caovcanrd.6 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
2 caovcanrd.5 . . . 4 (𝜑𝐴𝑆)
3 caovcand.3 . . . 4 (𝜑𝐵𝑆)
41, 2, 3caovcomd 7550 . . 3 (𝜑 → (𝐴𝐹𝐵) = (𝐵𝐹𝐴))
5 caovcand.4 . . . 4 (𝜑𝐶𝑆)
61, 2, 5caovcomd 7550 . . 3 (𝜑 → (𝐴𝐹𝐶) = (𝐶𝐹𝐴))
74, 6eqeq12d 2752 . 2 (𝜑 → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ (𝐵𝐹𝐴) = (𝐶𝐹𝐴)))
8 caovcang.1 . . 3 ((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))
9 caovcand.2 . . 3 (𝜑𝐴𝑇)
108, 9, 3, 5caovcand 7556 . 2 (𝜑 → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ 𝐵 = 𝐶))
117, 10bitr3d 280 1 (𝜑 → ((𝐵𝐹𝐴) = (𝐶𝐹𝐴) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  (class class class)co 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3065  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-iota 6448  df-fv 6504  df-ov 7360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator