MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovcan Structured version   Visualization version   GIF version

Theorem caovcan 7343
Description: Convert an operation cancellation law to class notation. (Contributed by NM, 20-Aug-1995.)
Hypotheses
Ref Expression
caovcan.1 𝐶 ∈ V
caovcan.2 ((𝑥𝑆𝑦𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧))
Assertion
Ref Expression
caovcan ((𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) → 𝐵 = 𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caovcan
StepHypRef Expression
1 oveq1 7153 . . . 4 (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦))
2 oveq1 7153 . . . 4 (𝑥 = 𝐴 → (𝑥𝐹𝐶) = (𝐴𝐹𝐶))
31, 2eqeq12d 2840 . . 3 (𝑥 = 𝐴 → ((𝑥𝐹𝑦) = (𝑥𝐹𝐶) ↔ (𝐴𝐹𝑦) = (𝐴𝐹𝐶)))
43imbi1d 345 . 2 (𝑥 = 𝐴 → (((𝑥𝐹𝑦) = (𝑥𝐹𝐶) → 𝑦 = 𝐶) ↔ ((𝐴𝐹𝑦) = (𝐴𝐹𝐶) → 𝑦 = 𝐶)))
5 oveq2 7154 . . . 4 (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵))
65eqeq1d 2826 . . 3 (𝑦 = 𝐵 → ((𝐴𝐹𝑦) = (𝐴𝐹𝐶) ↔ (𝐴𝐹𝐵) = (𝐴𝐹𝐶)))
7 eqeq1 2828 . . 3 (𝑦 = 𝐵 → (𝑦 = 𝐶𝐵 = 𝐶))
86, 7imbi12d 348 . 2 (𝑦 = 𝐵 → (((𝐴𝐹𝑦) = (𝐴𝐹𝐶) → 𝑦 = 𝐶) ↔ ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) → 𝐵 = 𝐶)))
9 caovcan.1 . . 3 𝐶 ∈ V
10 oveq2 7154 . . . . . 6 (𝑧 = 𝐶 → (𝑥𝐹𝑧) = (𝑥𝐹𝐶))
1110eqeq2d 2835 . . . . 5 (𝑧 = 𝐶 → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ (𝑥𝐹𝑦) = (𝑥𝐹𝐶)))
12 eqeq2 2836 . . . . 5 (𝑧 = 𝐶 → (𝑦 = 𝑧𝑦 = 𝐶))
1311, 12imbi12d 348 . . . 4 (𝑧 = 𝐶 → (((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧) ↔ ((𝑥𝐹𝑦) = (𝑥𝐹𝐶) → 𝑦 = 𝐶)))
1413imbi2d 344 . . 3 (𝑧 = 𝐶 → (((𝑥𝑆𝑦𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧)) ↔ ((𝑥𝑆𝑦𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝐶) → 𝑦 = 𝐶))))
15 caovcan.2 . . 3 ((𝑥𝑆𝑦𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧))
169, 14, 15vtocl 3545 . 2 ((𝑥𝑆𝑦𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝐶) → 𝑦 = 𝐶))
174, 8, 16vtocl2ga 3561 1 ((𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) → 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  Vcvv 3480  (class class class)co 7146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-ext 2796
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-ex 1782  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-v 3482  df-un 3924  df-in 3926  df-ss 3936  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-br 5054  df-iota 6303  df-fv 6352  df-ov 7149
This theorem is referenced by:  ecopovtrn  8392
  Copyright terms: Public domain W3C validator