![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caovcan | Structured version Visualization version GIF version |
Description: Convert an operation cancellation law to class notation. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
caovcan.1 | ⊢ 𝐶 ∈ V |
caovcan.2 | ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧)) |
Ref | Expression |
---|---|
caovcan | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) → 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7415 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦)) | |
2 | oveq1 7415 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝐶) = (𝐴𝐹𝐶)) | |
3 | 1, 2 | eqeq12d 2748 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥𝐹𝑦) = (𝑥𝐹𝐶) ↔ (𝐴𝐹𝑦) = (𝐴𝐹𝐶))) |
4 | 3 | imbi1d 341 | . 2 ⊢ (𝑥 = 𝐴 → (((𝑥𝐹𝑦) = (𝑥𝐹𝐶) → 𝑦 = 𝐶) ↔ ((𝐴𝐹𝑦) = (𝐴𝐹𝐶) → 𝑦 = 𝐶))) |
5 | oveq2 7416 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵)) | |
6 | 5 | eqeq1d 2734 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴𝐹𝑦) = (𝐴𝐹𝐶) ↔ (𝐴𝐹𝐵) = (𝐴𝐹𝐶))) |
7 | eqeq1 2736 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑦 = 𝐶 ↔ 𝐵 = 𝐶)) | |
8 | 6, 7 | imbi12d 344 | . 2 ⊢ (𝑦 = 𝐵 → (((𝐴𝐹𝑦) = (𝐴𝐹𝐶) → 𝑦 = 𝐶) ↔ ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) → 𝐵 = 𝐶))) |
9 | caovcan.1 | . . 3 ⊢ 𝐶 ∈ V | |
10 | oveq2 7416 | . . . . . 6 ⊢ (𝑧 = 𝐶 → (𝑥𝐹𝑧) = (𝑥𝐹𝐶)) | |
11 | 10 | eqeq2d 2743 | . . . . 5 ⊢ (𝑧 = 𝐶 → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ (𝑥𝐹𝑦) = (𝑥𝐹𝐶))) |
12 | eqeq2 2744 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝑦 = 𝑧 ↔ 𝑦 = 𝐶)) | |
13 | 11, 12 | imbi12d 344 | . . . 4 ⊢ (𝑧 = 𝐶 → (((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧) ↔ ((𝑥𝐹𝑦) = (𝑥𝐹𝐶) → 𝑦 = 𝐶))) |
14 | 13 | imbi2d 340 | . . 3 ⊢ (𝑧 = 𝐶 → (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧)) ↔ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝐶) → 𝑦 = 𝐶)))) |
15 | caovcan.2 | . . 3 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧)) | |
16 | 9, 14, 15 | vtocl 3549 | . 2 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝐶) → 𝑦 = 𝐶)) |
17 | 4, 8, 16 | vtocl2ga 3566 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) → 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 (class class class)co 7408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7411 |
This theorem is referenced by: ecopovtrn 8813 |
Copyright terms: Public domain | W3C validator |