![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caovcan | Structured version Visualization version GIF version |
Description: Convert an operation cancellation law to class notation. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
caovcan.1 | ⊢ 𝐶 ∈ V |
caovcan.2 | ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧)) |
Ref | Expression |
---|---|
caovcan | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) → 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7438 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦)) | |
2 | oveq1 7438 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝐶) = (𝐴𝐹𝐶)) | |
3 | 1, 2 | eqeq12d 2751 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥𝐹𝑦) = (𝑥𝐹𝐶) ↔ (𝐴𝐹𝑦) = (𝐴𝐹𝐶))) |
4 | 3 | imbi1d 341 | . 2 ⊢ (𝑥 = 𝐴 → (((𝑥𝐹𝑦) = (𝑥𝐹𝐶) → 𝑦 = 𝐶) ↔ ((𝐴𝐹𝑦) = (𝐴𝐹𝐶) → 𝑦 = 𝐶))) |
5 | oveq2 7439 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵)) | |
6 | 5 | eqeq1d 2737 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴𝐹𝑦) = (𝐴𝐹𝐶) ↔ (𝐴𝐹𝐵) = (𝐴𝐹𝐶))) |
7 | eqeq1 2739 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑦 = 𝐶 ↔ 𝐵 = 𝐶)) | |
8 | 6, 7 | imbi12d 344 | . 2 ⊢ (𝑦 = 𝐵 → (((𝐴𝐹𝑦) = (𝐴𝐹𝐶) → 𝑦 = 𝐶) ↔ ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) → 𝐵 = 𝐶))) |
9 | caovcan.1 | . . 3 ⊢ 𝐶 ∈ V | |
10 | oveq2 7439 | . . . . . 6 ⊢ (𝑧 = 𝐶 → (𝑥𝐹𝑧) = (𝑥𝐹𝐶)) | |
11 | 10 | eqeq2d 2746 | . . . . 5 ⊢ (𝑧 = 𝐶 → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ (𝑥𝐹𝑦) = (𝑥𝐹𝐶))) |
12 | eqeq2 2747 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝑦 = 𝑧 ↔ 𝑦 = 𝐶)) | |
13 | 11, 12 | imbi12d 344 | . . . 4 ⊢ (𝑧 = 𝐶 → (((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧) ↔ ((𝑥𝐹𝑦) = (𝑥𝐹𝐶) → 𝑦 = 𝐶))) |
14 | 13 | imbi2d 340 | . . 3 ⊢ (𝑧 = 𝐶 → (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧)) ↔ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝐶) → 𝑦 = 𝐶)))) |
15 | caovcan.2 | . . 3 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧)) | |
16 | 9, 14, 15 | vtocl 3558 | . 2 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝐶) → 𝑦 = 𝐶)) |
17 | 4, 8, 16 | vtocl2ga 3578 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) → 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 (class class class)co 7431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 |
This theorem is referenced by: ecopovtrn 8859 |
Copyright terms: Public domain | W3C validator |