|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > caovcan | Structured version Visualization version GIF version | ||
| Description: Convert an operation cancellation law to class notation. (Contributed by NM, 20-Aug-1995.) | 
| Ref | Expression | 
|---|---|
| caovcan.1 | ⊢ 𝐶 ∈ V | 
| caovcan.2 | ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧)) | 
| Ref | Expression | 
|---|---|
| caovcan | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) → 𝐵 = 𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oveq1 7439 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦)) | |
| 2 | oveq1 7439 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝐶) = (𝐴𝐹𝐶)) | |
| 3 | 1, 2 | eqeq12d 2752 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥𝐹𝑦) = (𝑥𝐹𝐶) ↔ (𝐴𝐹𝑦) = (𝐴𝐹𝐶))) | 
| 4 | 3 | imbi1d 341 | . 2 ⊢ (𝑥 = 𝐴 → (((𝑥𝐹𝑦) = (𝑥𝐹𝐶) → 𝑦 = 𝐶) ↔ ((𝐴𝐹𝑦) = (𝐴𝐹𝐶) → 𝑦 = 𝐶))) | 
| 5 | oveq2 7440 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵)) | |
| 6 | 5 | eqeq1d 2738 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴𝐹𝑦) = (𝐴𝐹𝐶) ↔ (𝐴𝐹𝐵) = (𝐴𝐹𝐶))) | 
| 7 | eqeq1 2740 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑦 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 8 | 6, 7 | imbi12d 344 | . 2 ⊢ (𝑦 = 𝐵 → (((𝐴𝐹𝑦) = (𝐴𝐹𝐶) → 𝑦 = 𝐶) ↔ ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) → 𝐵 = 𝐶))) | 
| 9 | caovcan.1 | . . 3 ⊢ 𝐶 ∈ V | |
| 10 | oveq2 7440 | . . . . . 6 ⊢ (𝑧 = 𝐶 → (𝑥𝐹𝑧) = (𝑥𝐹𝐶)) | |
| 11 | 10 | eqeq2d 2747 | . . . . 5 ⊢ (𝑧 = 𝐶 → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ (𝑥𝐹𝑦) = (𝑥𝐹𝐶))) | 
| 12 | eqeq2 2748 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝑦 = 𝑧 ↔ 𝑦 = 𝐶)) | |
| 13 | 11, 12 | imbi12d 344 | . . . 4 ⊢ (𝑧 = 𝐶 → (((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧) ↔ ((𝑥𝐹𝑦) = (𝑥𝐹𝐶) → 𝑦 = 𝐶))) | 
| 14 | 13 | imbi2d 340 | . . 3 ⊢ (𝑧 = 𝐶 → (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧)) ↔ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝐶) → 𝑦 = 𝐶)))) | 
| 15 | caovcan.2 | . . 3 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧)) | |
| 16 | 9, 14, 15 | vtocl 3557 | . 2 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝐶) → 𝑦 = 𝐶)) | 
| 17 | 4, 8, 16 | vtocl2ga 3577 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) → 𝐵 = 𝐶)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3479 (class class class)co 7432 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-iota 6513 df-fv 6568 df-ov 7435 | 
| This theorem is referenced by: ecopovtrn 8861 | 
| Copyright terms: Public domain | W3C validator |