Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjorsf Structured version   Visualization version   GIF version

Theorem disjorsf 32507
Description: Two ways to say that a collection 𝐵(𝑖) for 𝑖𝐴 is disjoint. (Contributed by Thierry Arnoux, 8-Mar-2017.)
Hypothesis
Ref Expression
disjorsf.1 𝑥𝐴
Assertion
Ref Expression
disjorsf (Disj 𝑥𝐴 𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
Distinct variable groups:   𝑖,𝑗,𝑥   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem disjorsf
StepHypRef Expression
1 disjorsf.1 . . 3 𝑥𝐴
2 nfcv 2898 . . 3 𝑖𝐵
3 nfcsb1v 3898 . . 3 𝑥𝑖 / 𝑥𝐵
4 csbeq1a 3888 . . 3 (𝑥 = 𝑖𝐵 = 𝑖 / 𝑥𝐵)
51, 2, 3, 4cbvdisjf 32498 . 2 (Disj 𝑥𝐴 𝐵Disj 𝑖𝐴 𝑖 / 𝑥𝐵)
6 csbeq1 3877 . . 3 (𝑖 = 𝑗𝑖 / 𝑥𝐵 = 𝑗 / 𝑥𝐵)
76disjor 5101 . 2 (Disj 𝑖𝐴 𝑖 / 𝑥𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
85, 7bitri 275 1 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1540  wnfc 2883  wral 3051  csb 3874  cin 3925  c0 4308  Disj wdisj 5086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rmo 3359  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-in 3933  df-nul 4309  df-disj 5087
This theorem is referenced by:  disjif2  32508  disjdsct  32626
  Copyright terms: Public domain W3C validator