MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz6.12f Structured version   Visualization version   GIF version

Theorem tz6.12f 6887
Description: Function value, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 30-Aug-1999.)
Hypothesis
Ref Expression
tz6.12f.1 𝑦𝐹
Assertion
Ref Expression
tz6.12f ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑦)
Distinct variable group:   𝑦,𝐴
Allowed substitution hint:   𝐹(𝑦)

Proof of Theorem tz6.12f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 opeq2 4841 . . . . 5 (𝑧 = 𝑦 → ⟨𝐴, 𝑧⟩ = ⟨𝐴, 𝑦⟩)
21eleq1d 2814 . . . 4 (𝑧 = 𝑦 → (⟨𝐴, 𝑧⟩ ∈ 𝐹 ↔ ⟨𝐴, 𝑦⟩ ∈ 𝐹))
3 tz6.12f.1 . . . . . . 7 𝑦𝐹
43nfel2 2911 . . . . . 6 𝑦𝐴, 𝑧⟩ ∈ 𝐹
5 nfv 1914 . . . . . 6 𝑧𝐴, 𝑦⟩ ∈ 𝐹
64, 5, 2cbveuw 2600 . . . . 5 (∃!𝑧𝐴, 𝑧⟩ ∈ 𝐹 ↔ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)
76a1i 11 . . . 4 (𝑧 = 𝑦 → (∃!𝑧𝐴, 𝑧⟩ ∈ 𝐹 ↔ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹))
82, 7anbi12d 632 . . 3 (𝑧 = 𝑦 → ((⟨𝐴, 𝑧⟩ ∈ 𝐹 ∧ ∃!𝑧𝐴, 𝑧⟩ ∈ 𝐹) ↔ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)))
9 eqeq2 2742 . . 3 (𝑧 = 𝑦 → ((𝐹𝐴) = 𝑧 ↔ (𝐹𝐴) = 𝑦))
108, 9imbi12d 344 . 2 (𝑧 = 𝑦 → (((⟨𝐴, 𝑧⟩ ∈ 𝐹 ∧ ∃!𝑧𝐴, 𝑧⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑧) ↔ ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑦)))
11 tz6.12 6886 . 2 ((⟨𝐴, 𝑧⟩ ∈ 𝐹 ∧ ∃!𝑧𝐴, 𝑧⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑧)
1210, 11chvarvv 1989 1 ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ∃!weu 2562  wnfc 2877  cop 4598  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator