![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz6.12f | Structured version Visualization version GIF version |
Description: Function value, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 30-Aug-1999.) |
Ref | Expression |
---|---|
tz6.12f.1 | ⊢ Ⅎ𝑦𝐹 |
Ref | Expression |
---|---|
tz6.12f | ⊢ ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦⟨𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹‘𝐴) = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 4875 | . . . . 5 ⊢ (𝑧 = 𝑦 → ⟨𝐴, 𝑧⟩ = ⟨𝐴, 𝑦⟩) | |
2 | 1 | eleq1d 2819 | . . . 4 ⊢ (𝑧 = 𝑦 → (⟨𝐴, 𝑧⟩ ∈ 𝐹 ↔ ⟨𝐴, 𝑦⟩ ∈ 𝐹)) |
3 | tz6.12f.1 | . . . . . . 7 ⊢ Ⅎ𝑦𝐹 | |
4 | 3 | nfel2 2922 | . . . . . 6 ⊢ Ⅎ𝑦⟨𝐴, 𝑧⟩ ∈ 𝐹 |
5 | nfv 1918 | . . . . . 6 ⊢ Ⅎ𝑧⟨𝐴, 𝑦⟩ ∈ 𝐹 | |
6 | 4, 5, 2 | cbveuw 2602 | . . . . 5 ⊢ (∃!𝑧⟨𝐴, 𝑧⟩ ∈ 𝐹 ↔ ∃!𝑦⟨𝐴, 𝑦⟩ ∈ 𝐹) |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝑧 = 𝑦 → (∃!𝑧⟨𝐴, 𝑧⟩ ∈ 𝐹 ↔ ∃!𝑦⟨𝐴, 𝑦⟩ ∈ 𝐹)) |
8 | 2, 7 | anbi12d 632 | . . 3 ⊢ (𝑧 = 𝑦 → ((⟨𝐴, 𝑧⟩ ∈ 𝐹 ∧ ∃!𝑧⟨𝐴, 𝑧⟩ ∈ 𝐹) ↔ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦⟨𝐴, 𝑦⟩ ∈ 𝐹))) |
9 | eqeq2 2745 | . . 3 ⊢ (𝑧 = 𝑦 → ((𝐹‘𝐴) = 𝑧 ↔ (𝐹‘𝐴) = 𝑦)) | |
10 | 8, 9 | imbi12d 345 | . 2 ⊢ (𝑧 = 𝑦 → (((⟨𝐴, 𝑧⟩ ∈ 𝐹 ∧ ∃!𝑧⟨𝐴, 𝑧⟩ ∈ 𝐹) → (𝐹‘𝐴) = 𝑧) ↔ ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦⟨𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹‘𝐴) = 𝑦))) |
11 | tz6.12 6917 | . 2 ⊢ ((⟨𝐴, 𝑧⟩ ∈ 𝐹 ∧ ∃!𝑧⟨𝐴, 𝑧⟩ ∈ 𝐹) → (𝐹‘𝐴) = 𝑧) | |
12 | 10, 11 | chvarvv 2003 | 1 ⊢ ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦⟨𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹‘𝐴) = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃!weu 2563 Ⅎwnfc 2884 ⟨cop 4635 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |