![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz6.12f | Structured version Visualization version GIF version |
Description: Function value, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 30-Aug-1999.) |
Ref | Expression |
---|---|
tz6.12f.1 | ⊢ Ⅎ𝑦𝐹 |
Ref | Expression |
---|---|
tz6.12f | ⊢ ((〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 4678 | . . . . 5 ⊢ (𝑧 = 𝑦 → 〈𝐴, 𝑧〉 = 〈𝐴, 𝑦〉) | |
2 | 1 | eleq1d 2851 | . . . 4 ⊢ (𝑧 = 𝑦 → (〈𝐴, 𝑧〉 ∈ 𝐹 ↔ 〈𝐴, 𝑦〉 ∈ 𝐹)) |
3 | tz6.12f.1 | . . . . . . 7 ⊢ Ⅎ𝑦𝐹 | |
4 | 3 | nfel2 2949 | . . . . . 6 ⊢ Ⅎ𝑦〈𝐴, 𝑧〉 ∈ 𝐹 |
5 | nfv 1873 | . . . . . 6 ⊢ Ⅎ𝑧〈𝐴, 𝑦〉 ∈ 𝐹 | |
6 | 4, 5, 2 | cbveu 2637 | . . . . 5 ⊢ (∃!𝑧〈𝐴, 𝑧〉 ∈ 𝐹 ↔ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝑧 = 𝑦 → (∃!𝑧〈𝐴, 𝑧〉 ∈ 𝐹 ↔ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹)) |
8 | 2, 7 | anbi12d 621 | . . 3 ⊢ (𝑧 = 𝑦 → ((〈𝐴, 𝑧〉 ∈ 𝐹 ∧ ∃!𝑧〈𝐴, 𝑧〉 ∈ 𝐹) ↔ (〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹))) |
9 | eqeq2 2790 | . . 3 ⊢ (𝑧 = 𝑦 → ((𝐹‘𝐴) = 𝑧 ↔ (𝐹‘𝐴) = 𝑦)) | |
10 | 8, 9 | imbi12d 337 | . 2 ⊢ (𝑧 = 𝑦 → (((〈𝐴, 𝑧〉 ∈ 𝐹 ∧ ∃!𝑧〈𝐴, 𝑧〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑧) ↔ ((〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑦))) |
11 | tz6.12 6522 | . 2 ⊢ ((〈𝐴, 𝑧〉 ∈ 𝐹 ∧ ∃!𝑧〈𝐴, 𝑧〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑧) | |
12 | 10, 11 | chvarv 2327 | 1 ⊢ ((〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∃!weu 2583 Ⅎwnfc 2917 〈cop 4447 ‘cfv 6188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-rex 3095 df-rab 3098 df-v 3418 df-sbc 3683 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-iota 6152 df-fv 6196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |