MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz6.12f Structured version   Visualization version   GIF version

Theorem tz6.12f 6845
Description: Function value, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 30-Aug-1999.)
Hypothesis
Ref Expression
tz6.12f.1 𝑦𝐹
Assertion
Ref Expression
tz6.12f ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑦)
Distinct variable group:   𝑦,𝐴
Allowed substitution hint:   𝐹(𝑦)

Proof of Theorem tz6.12f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 opeq2 4817 . . . . 5 (𝑧 = 𝑦 → ⟨𝐴, 𝑧⟩ = ⟨𝐴, 𝑦⟩)
21eleq1d 2821 . . . 4 (𝑧 = 𝑦 → (⟨𝐴, 𝑧⟩ ∈ 𝐹 ↔ ⟨𝐴, 𝑦⟩ ∈ 𝐹))
3 tz6.12f.1 . . . . . . 7 𝑦𝐹
43nfel2 2922 . . . . . 6 𝑦𝐴, 𝑧⟩ ∈ 𝐹
5 nfv 1916 . . . . . 6 𝑧𝐴, 𝑦⟩ ∈ 𝐹
64, 5, 2cbveuw 2605 . . . . 5 (∃!𝑧𝐴, 𝑧⟩ ∈ 𝐹 ↔ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)
76a1i 11 . . . 4 (𝑧 = 𝑦 → (∃!𝑧𝐴, 𝑧⟩ ∈ 𝐹 ↔ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹))
82, 7anbi12d 631 . . 3 (𝑧 = 𝑦 → ((⟨𝐴, 𝑧⟩ ∈ 𝐹 ∧ ∃!𝑧𝐴, 𝑧⟩ ∈ 𝐹) ↔ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)))
9 eqeq2 2748 . . 3 (𝑧 = 𝑦 → ((𝐹𝐴) = 𝑧 ↔ (𝐹𝐴) = 𝑦))
108, 9imbi12d 344 . 2 (𝑧 = 𝑦 → (((⟨𝐴, 𝑧⟩ ∈ 𝐹 ∧ ∃!𝑧𝐴, 𝑧⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑧) ↔ ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑦)))
11 tz6.12 6844 . 2 ((⟨𝐴, 𝑧⟩ ∈ 𝐹 ∧ ∃!𝑧𝐴, 𝑧⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑧)
1210, 11chvarvv 2001 1 ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  ∃!weu 2566  wnfc 2884  cop 4578  cfv 6473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-iota 6425  df-fv 6481
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator