![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbviotav | Structured version Visualization version GIF version |
Description: Change bound variables in a description binder. Usage of this theorem is discouraged because it depends on ax-13 2375. Use the weaker cbviotavw 6524 when possible. (Contributed by Andrew Salmon, 1-Aug-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbviotav.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbviotav | ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbviotav.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | nfv 1912 | . 2 ⊢ Ⅎ𝑦𝜑 | |
3 | nfv 1912 | . 2 ⊢ Ⅎ𝑥𝜓 | |
4 | 1, 2, 3 | cbviota 6525 | 1 ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ℩cio 6514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-13 2375 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-ss 3980 df-sn 4632 df-uni 4913 df-iota 6516 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |