| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbviotav | Structured version Visualization version GIF version | ||
| Description: Change bound variables in a description binder. Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker cbviotavw 6497 when possible. (Contributed by Andrew Salmon, 1-Aug-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cbviotav.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbviotav | ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbviotav.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | nfv 1914 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 1, 2, 3 | cbviota 6498 | 1 ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ℩cio 6487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2377 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-ss 3948 df-sn 4607 df-uni 4889 df-iota 6489 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |