MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbviotav Structured version   Visualization version   GIF version

Theorem cbviotav 6387
Description: Change bound variables in a description binder. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbviotavw 6384 when possible. (Contributed by Andrew Salmon, 1-Aug-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
cbviotav.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbviotav (℩𝑥𝜑) = (℩𝑦𝜓)
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbviotav
StepHypRef Expression
1 cbviotav.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
2 nfv 1918 . 2 𝑦𝜑
3 nfv 1918 . 2 𝑥𝜓
41, 2, 3cbviota 6386 1 (℩𝑥𝜑) = (℩𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  cio 6374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-sn 4559  df-uni 4837  df-iota 6376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator