| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvmpo1vw2 | Structured version Visualization version GIF version | ||
| Description: Change domains and the first bound variable in a maps-to function, using implicit substitution. (Contributed by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbvmpo1vw2.1 | ⊢ (𝑥 = 𝑧 → 𝐸 = 𝐹) |
| cbvmpo1vw2.2 | ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐷) |
| cbvmpo1vw2.3 | ⊢ (𝑥 = 𝑧 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| cbvmpo1vw2 | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 𝐸) = (𝑧 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . . 6 ⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) | |
| 2 | cbvmpo1vw2.3 | . . . . . 6 ⊢ (𝑥 = 𝑧 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | eleq12d 2827 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵)) |
| 4 | cbvmpo1vw2.2 | . . . . . 6 ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐷) | |
| 5 | 4 | eleq2d 2819 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
| 6 | 3, 5 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ↔ (𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
| 7 | cbvmpo1vw2.1 | . . . . 5 ⊢ (𝑥 = 𝑧 → 𝐸 = 𝐹) | |
| 8 | 7 | eqeq2d 2745 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑡 = 𝐸 ↔ 𝑡 = 𝐹)) |
| 9 | 6, 8 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑧 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑡 = 𝐸) ↔ ((𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑡 = 𝐹))) |
| 10 | 9 | cbvoprab1vw 36213 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑡〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑡 = 𝐸)} = {〈〈𝑧, 𝑦〉, 𝑡〉 ∣ ((𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑡 = 𝐹)} |
| 11 | df-mpo 7418 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 𝐸) = {〈〈𝑥, 𝑦〉, 𝑡〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑡 = 𝐸)} | |
| 12 | df-mpo 7418 | . 2 ⊢ (𝑧 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ 𝐹) = {〈〈𝑧, 𝑦〉, 𝑡〉 ∣ ((𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑡 = 𝐹)} | |
| 13 | 10, 11, 12 | 3eqtr4i 2767 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 𝐸) = (𝑧 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {coprab 7414 ∈ cmpo 7415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-oprab 7417 df-mpo 7418 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |