Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvmpo2vw2 Structured version   Visualization version   GIF version

Theorem cbvmpo2vw2 36202
Description: Change domains and the second bound variable in a maps-to function, using implicit substitution. (Contributed by GG, 14-Aug-2025.)
Hypotheses
Ref Expression
cbvmpo2vw2.1 (𝑦 = 𝑧𝐸 = 𝐹)
cbvmpo2vw2.2 (𝑦 = 𝑧𝐶 = 𝐷)
cbvmpo2vw2.3 (𝑦 = 𝑧𝐴 = 𝐵)
Assertion
Ref Expression
cbvmpo2vw2 (𝑥𝐴, 𝑦𝐶𝐸) = (𝑥𝐵, 𝑧𝐷𝐹)
Distinct variable groups:   𝑥,𝑦,𝑧   𝑧,𝐴   𝑦,𝐵   𝑧,𝐶   𝑦,𝐷   𝑧,𝐸   𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑧)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑧)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑧)

Proof of Theorem cbvmpo2vw2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 cbvmpo2vw2.3 . . . . . 6 (𝑦 = 𝑧𝐴 = 𝐵)
21eleq2d 2830 . . . . 5 (𝑦 = 𝑧 → (𝑥𝐴𝑥𝐵))
3 id 22 . . . . . 6 (𝑦 = 𝑧𝑦 = 𝑧)
4 cbvmpo2vw2.2 . . . . . 6 (𝑦 = 𝑧𝐶 = 𝐷)
53, 4eleq12d 2838 . . . . 5 (𝑦 = 𝑧 → (𝑦𝐶𝑧𝐷))
62, 5anbi12d 631 . . . 4 (𝑦 = 𝑧 → ((𝑥𝐴𝑦𝐶) ↔ (𝑥𝐵𝑧𝐷)))
7 cbvmpo2vw2.1 . . . . 5 (𝑦 = 𝑧𝐸 = 𝐹)
87eqeq2d 2751 . . . 4 (𝑦 = 𝑧 → (𝑡 = 𝐸𝑡 = 𝐹))
96, 8anbi12d 631 . . 3 (𝑦 = 𝑧 → (((𝑥𝐴𝑦𝐶) ∧ 𝑡 = 𝐸) ↔ ((𝑥𝐵𝑧𝐷) ∧ 𝑡 = 𝐹)))
109cbvoprab2vw 36196 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑡⟩ ∣ ((𝑥𝐴𝑦𝐶) ∧ 𝑡 = 𝐸)} = {⟨⟨𝑥, 𝑧⟩, 𝑡⟩ ∣ ((𝑥𝐵𝑧𝐷) ∧ 𝑡 = 𝐹)}
11 df-mpo 7448 . 2 (𝑥𝐴, 𝑦𝐶𝐸) = {⟨⟨𝑥, 𝑦⟩, 𝑡⟩ ∣ ((𝑥𝐴𝑦𝐶) ∧ 𝑡 = 𝐸)}
12 df-mpo 7448 . 2 (𝑥𝐵, 𝑧𝐷𝐹) = {⟨⟨𝑥, 𝑧⟩, 𝑡⟩ ∣ ((𝑥𝐵𝑧𝐷) ∧ 𝑡 = 𝐹)}
1310, 11, 123eqtr4i 2778 1 (𝑥𝐴, 𝑦𝐶𝐸) = (𝑥𝐵, 𝑧𝐷𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {coprab 7444  cmpo 7445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-oprab 7447  df-mpo 7448
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator