| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvmpo2vw2 | Structured version Visualization version GIF version | ||
| Description: Change domains and the second bound variable in a maps-to function, using implicit substitution. (Contributed by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbvmpo2vw2.1 | ⊢ (𝑦 = 𝑧 → 𝐸 = 𝐹) |
| cbvmpo2vw2.2 | ⊢ (𝑦 = 𝑧 → 𝐶 = 𝐷) |
| cbvmpo2vw2.3 | ⊢ (𝑦 = 𝑧 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| cbvmpo2vw2 | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 𝐸) = (𝑥 ∈ 𝐵, 𝑧 ∈ 𝐷 ↦ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvmpo2vw2.3 | . . . . . 6 ⊢ (𝑦 = 𝑧 → 𝐴 = 𝐵) | |
| 2 | 1 | eleq2d 2819 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 3 | id 22 | . . . . . 6 ⊢ (𝑦 = 𝑧 → 𝑦 = 𝑧) | |
| 4 | cbvmpo2vw2.2 | . . . . . 6 ⊢ (𝑦 = 𝑧 → 𝐶 = 𝐷) | |
| 5 | 3, 4 | eleq12d 2827 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝐶 ↔ 𝑧 ∈ 𝐷)) |
| 6 | 2, 5 | anbi12d 632 | . . . 4 ⊢ (𝑦 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐷))) |
| 7 | cbvmpo2vw2.1 | . . . . 5 ⊢ (𝑦 = 𝑧 → 𝐸 = 𝐹) | |
| 8 | 7 | eqeq2d 2744 | . . . 4 ⊢ (𝑦 = 𝑧 → (𝑡 = 𝐸 ↔ 𝑡 = 𝐹)) |
| 9 | 6, 8 | anbi12d 632 | . . 3 ⊢ (𝑦 = 𝑧 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑡 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐷) ∧ 𝑡 = 𝐹))) |
| 10 | 9 | cbvoprab2vw 36354 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑡〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑡 = 𝐸)} = {〈〈𝑥, 𝑧〉, 𝑡〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐷) ∧ 𝑡 = 𝐹)} |
| 11 | df-mpo 7360 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 𝐸) = {〈〈𝑥, 𝑦〉, 𝑡〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑡 = 𝐸)} | |
| 12 | df-mpo 7360 | . 2 ⊢ (𝑥 ∈ 𝐵, 𝑧 ∈ 𝐷 ↦ 𝐹) = {〈〈𝑥, 𝑧〉, 𝑡〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐷) ∧ 𝑡 = 𝐹)} | |
| 13 | 10, 11, 12 | 3eqtr4i 2766 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 𝐸) = (𝑥 ∈ 𝐵, 𝑧 ∈ 𝐷 ↦ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {coprab 7356 ∈ cmpo 7357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-oprab 7359 df-mpo 7360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |