![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvmpo2vw2 | Structured version Visualization version GIF version |
Description: Change domains and the second bound variable in a maps-to function, using implicit substitution. (Contributed by GG, 14-Aug-2025.) |
Ref | Expression |
---|---|
cbvmpo2vw2.1 | ⊢ (𝑦 = 𝑧 → 𝐸 = 𝐹) |
cbvmpo2vw2.2 | ⊢ (𝑦 = 𝑧 → 𝐶 = 𝐷) |
cbvmpo2vw2.3 | ⊢ (𝑦 = 𝑧 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
cbvmpo2vw2 | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 𝐸) = (𝑥 ∈ 𝐵, 𝑧 ∈ 𝐷 ↦ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvmpo2vw2.3 | . . . . . 6 ⊢ (𝑦 = 𝑧 → 𝐴 = 𝐵) | |
2 | 1 | eleq2d 2830 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
3 | id 22 | . . . . . 6 ⊢ (𝑦 = 𝑧 → 𝑦 = 𝑧) | |
4 | cbvmpo2vw2.2 | . . . . . 6 ⊢ (𝑦 = 𝑧 → 𝐶 = 𝐷) | |
5 | 3, 4 | eleq12d 2838 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝐶 ↔ 𝑧 ∈ 𝐷)) |
6 | 2, 5 | anbi12d 631 | . . . 4 ⊢ (𝑦 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐷))) |
7 | cbvmpo2vw2.1 | . . . . 5 ⊢ (𝑦 = 𝑧 → 𝐸 = 𝐹) | |
8 | 7 | eqeq2d 2751 | . . . 4 ⊢ (𝑦 = 𝑧 → (𝑡 = 𝐸 ↔ 𝑡 = 𝐹)) |
9 | 6, 8 | anbi12d 631 | . . 3 ⊢ (𝑦 = 𝑧 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑡 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐷) ∧ 𝑡 = 𝐹))) |
10 | 9 | cbvoprab2vw 36196 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑡〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑡 = 𝐸)} = {〈〈𝑥, 𝑧〉, 𝑡〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐷) ∧ 𝑡 = 𝐹)} |
11 | df-mpo 7448 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 𝐸) = {〈〈𝑥, 𝑦〉, 𝑡〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑡 = 𝐸)} | |
12 | df-mpo 7448 | . 2 ⊢ (𝑥 ∈ 𝐵, 𝑧 ∈ 𝐷 ↦ 𝐹) = {〈〈𝑥, 𝑧〉, 𝑡〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐷) ∧ 𝑡 = 𝐹)} | |
13 | 10, 11, 12 | 3eqtr4i 2778 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 𝐸) = (𝑥 ∈ 𝐵, 𝑧 ∈ 𝐷 ↦ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {coprab 7444 ∈ cmpo 7445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-oprab 7447 df-mpo 7448 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |