Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvmpodavw2 Structured version   Visualization version   GIF version

Theorem cbvmpodavw2 36249
Description: Change bound variable and domains in a maps-to function. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypotheses
Ref Expression
cbvmpodavw2.1 (((𝜑𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝐸 = 𝐹)
cbvmpodavw2.2 (((𝜑𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷)
cbvmpodavw2.3 (((𝜑𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝐴 = 𝐵)
Assertion
Ref Expression
cbvmpodavw2 (𝜑 → (𝑥𝐴, 𝑦𝐶𝐸) = (𝑧𝐵, 𝑤𝐷𝐹))
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧,𝑤   𝑧,𝐴,𝑤   𝑥,𝐵,𝑦   𝑧,𝐶,𝑤   𝑥,𝐷,𝑦   𝑧,𝐸,𝑤   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑧,𝑤)   𝐶(𝑥,𝑦)   𝐷(𝑧,𝑤)   𝐸(𝑥,𝑦)   𝐹(𝑧,𝑤)

Proof of Theorem cbvmpodavw2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . . 6 (((𝜑𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑥 = 𝑧)
2 cbvmpodavw2.3 . . . . . 6 (((𝜑𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝐴 = 𝐵)
31, 2eleq12d 2838 . . . . 5 (((𝜑𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑥𝐴𝑧𝐵))
4 simpr 484 . . . . . 6 (((𝜑𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤)
5 cbvmpodavw2.2 . . . . . 6 (((𝜑𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷)
64, 5eleq12d 2838 . . . . 5 (((𝜑𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑦𝐶𝑤𝐷))
73, 6anbi12d 631 . . . 4 (((𝜑𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → ((𝑥𝐴𝑦𝐶) ↔ (𝑧𝐵𝑤𝐷)))
8 cbvmpodavw2.1 . . . . 5 (((𝜑𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝐸 = 𝐹)
98eqeq2d 2751 . . . 4 (((𝜑𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑡 = 𝐸𝑡 = 𝐹))
107, 9anbi12d 631 . . 3 (((𝜑𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (((𝑥𝐴𝑦𝐶) ∧ 𝑡 = 𝐸) ↔ ((𝑧𝐵𝑤𝐷) ∧ 𝑡 = 𝐹)))
1110cbvoprab12davw 36233 . 2 (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑡⟩ ∣ ((𝑥𝐴𝑦𝐶) ∧ 𝑡 = 𝐸)} = {⟨⟨𝑧, 𝑤⟩, 𝑡⟩ ∣ ((𝑧𝐵𝑤𝐷) ∧ 𝑡 = 𝐹)})
12 df-mpo 7448 . 2 (𝑥𝐴, 𝑦𝐶𝐸) = {⟨⟨𝑥, 𝑦⟩, 𝑡⟩ ∣ ((𝑥𝐴𝑦𝐶) ∧ 𝑡 = 𝐸)}
13 df-mpo 7448 . 2 (𝑧𝐵, 𝑤𝐷𝐹) = {⟨⟨𝑧, 𝑤⟩, 𝑡⟩ ∣ ((𝑧𝐵𝑤𝐷) ∧ 𝑡 = 𝐹)}
1411, 12, 133eqtr4g 2805 1 (𝜑 → (𝑥𝐴, 𝑦𝐶𝐸) = (𝑧𝐵, 𝑤𝐷𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {coprab 7444  cmpo 7445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-oprab 7447  df-mpo 7448
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator