| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvmpo1davw2 | Structured version Visualization version GIF version | ||
| Description: Change first bound variable and domains in a maps-to function. Deduction form. (Contributed by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbvmpo1davw2.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑧) → 𝐸 = 𝐹) |
| cbvmpo1davw2.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝑧) → 𝐶 = 𝐷) |
| cbvmpo1davw2.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝑧) → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| cbvmpo1davw2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 𝐸) = (𝑧 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧) | |
| 2 | cbvmpo1davw2.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑧) → 𝐴 = 𝐵) | |
| 3 | 1, 2 | eleq12d 2834 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑧) → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵)) |
| 4 | cbvmpo1davw2.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑧) → 𝐶 = 𝐷) | |
| 5 | 4 | eleq2d 2826 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑧) → (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
| 6 | 3, 5 | anbi12d 632 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑧) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ↔ (𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
| 7 | cbvmpo1davw2.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑧) → 𝐸 = 𝐹) | |
| 8 | 7 | eqeq2d 2747 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑧) → (𝑡 = 𝐸 ↔ 𝑡 = 𝐹)) |
| 9 | 6, 8 | anbi12d 632 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑧) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑡 = 𝐸) ↔ ((𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑡 = 𝐹))) |
| 10 | 9 | cbvoprab1davw 36250 | . 2 ⊢ (𝜑 → {〈〈𝑥, 𝑦〉, 𝑡〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑡 = 𝐸)} = {〈〈𝑧, 𝑦〉, 𝑡〉 ∣ ((𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑡 = 𝐹)}) |
| 11 | df-mpo 7434 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 𝐸) = {〈〈𝑥, 𝑦〉, 𝑡〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑡 = 𝐸)} | |
| 12 | df-mpo 7434 | . 2 ⊢ (𝑧 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ 𝐹) = {〈〈𝑧, 𝑦〉, 𝑡〉 ∣ ((𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑡 = 𝐹)} | |
| 13 | 10, 11, 12 | 3eqtr4g 2801 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 𝐸) = (𝑧 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {coprab 7430 ∈ cmpo 7431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-oprab 7433 df-mpo 7434 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |