MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvreuvwOLD Structured version   Visualization version   GIF version

Theorem cbvreuvwOLD 3387
Description: Obsolete version of cbvreuvw 3386 as of 30-Sep-2024. (Contributed by NM, 5-Apr-2004.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
cbvralvw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvreuvwOLD (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvreuvwOLD
StepHypRef Expression
1 nfv 1917 . 2 𝑦𝜑
2 nfv 1917 . 2 𝑥𝜓
3 cbvralvw.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvreuw 3376 1 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  ∃!wreu 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-11 2154  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-mo 2540  df-eu 2569  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator