MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvreucsf Structured version   Visualization version   GIF version

Theorem cbvreucsf 3925
Description: A more general version of cbvreuv 3453 that has no distinct variable restrictions. Changes bound variables using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2384. (Contributed by Andrew Salmon, 13-Jul-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbvralcsf.1 𝑦𝐴
cbvralcsf.2 𝑥𝐵
cbvralcsf.3 𝑦𝜑
cbvralcsf.4 𝑥𝜓
cbvralcsf.5 (𝑥 = 𝑦𝐴 = 𝐵)
cbvralcsf.6 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvreucsf (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐵 𝜓)

Proof of Theorem cbvreucsf
Dummy variables 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1909 . . . 4 𝑧(𝑥𝐴𝜑)
2 nfcsb1v 3905 . . . . . 6 𝑥𝑧 / 𝑥𝐴
32nfcri 2969 . . . . 5 𝑥 𝑧𝑧 / 𝑥𝐴
4 nfs1v 2267 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
53, 4nfan 1894 . . . 4 𝑥(𝑧𝑧 / 𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑)
6 id 22 . . . . . 6 (𝑥 = 𝑧𝑥 = 𝑧)
7 csbeq1a 3895 . . . . . 6 (𝑥 = 𝑧𝐴 = 𝑧 / 𝑥𝐴)
86, 7eleq12d 2905 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝑧 / 𝑥𝐴))
9 sbequ12 2246 . . . . 5 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
108, 9anbi12d 632 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐴𝜑) ↔ (𝑧𝑧 / 𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑)))
111, 5, 10cbveu 2685 . . 3 (∃!𝑥(𝑥𝐴𝜑) ↔ ∃!𝑧(𝑧𝑧 / 𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑))
12 nfcv 2975 . . . . . . 7 𝑦𝑧
13 cbvralcsf.1 . . . . . . 7 𝑦𝐴
1412, 13nfcsb 3908 . . . . . 6 𝑦𝑧 / 𝑥𝐴
1514nfcri 2969 . . . . 5 𝑦 𝑧𝑧 / 𝑥𝐴
16 cbvralcsf.3 . . . . . 6 𝑦𝜑
1716nfsb 2559 . . . . 5 𝑦[𝑧 / 𝑥]𝜑
1815, 17nfan 1894 . . . 4 𝑦(𝑧𝑧 / 𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑)
19 nfv 1909 . . . 4 𝑧(𝑦𝐵𝜓)
20 id 22 . . . . . 6 (𝑧 = 𝑦𝑧 = 𝑦)
21 csbeq1 3884 . . . . . . 7 (𝑧 = 𝑦𝑧 / 𝑥𝐴 = 𝑦 / 𝑥𝐴)
22 sbsbc 3774 . . . . . . . . 9 ([𝑦 / 𝑥]𝑣𝐴[𝑦 / 𝑥]𝑣𝐴)
2322abbii 2884 . . . . . . . 8 {𝑣 ∣ [𝑦 / 𝑥]𝑣𝐴} = {𝑣[𝑦 / 𝑥]𝑣𝐴}
24 cbvralcsf.2 . . . . . . . . . . . 12 𝑥𝐵
2524nfcri 2969 . . . . . . . . . . 11 𝑥 𝑣𝐵
26 cbvralcsf.5 . . . . . . . . . . . 12 (𝑥 = 𝑦𝐴 = 𝐵)
2726eleq2d 2896 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑣𝐴𝑣𝐵))
2825, 27sbie 2538 . . . . . . . . . 10 ([𝑦 / 𝑥]𝑣𝐴𝑣𝐵)
2928bicomi 226 . . . . . . . . 9 (𝑣𝐵 ↔ [𝑦 / 𝑥]𝑣𝐴)
3029abbi2i 2951 . . . . . . . 8 𝐵 = {𝑣 ∣ [𝑦 / 𝑥]𝑣𝐴}
31 df-csb 3882 . . . . . . . 8 𝑦 / 𝑥𝐴 = {𝑣[𝑦 / 𝑥]𝑣𝐴}
3223, 30, 313eqtr4ri 2853 . . . . . . 7 𝑦 / 𝑥𝐴 = 𝐵
3321, 32syl6eq 2870 . . . . . 6 (𝑧 = 𝑦𝑧 / 𝑥𝐴 = 𝐵)
3420, 33eleq12d 2905 . . . . 5 (𝑧 = 𝑦 → (𝑧𝑧 / 𝑥𝐴𝑦𝐵))
35 sbequ 2084 . . . . . 6 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
36 cbvralcsf.4 . . . . . . 7 𝑥𝜓
37 cbvralcsf.6 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜓))
3836, 37sbie 2538 . . . . . 6 ([𝑦 / 𝑥]𝜑𝜓)
3935, 38syl6bb 289 . . . . 5 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑𝜓))
4034, 39anbi12d 632 . . . 4 (𝑧 = 𝑦 → ((𝑧𝑧 / 𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦𝐵𝜓)))
4118, 19, 40cbveu 2685 . . 3 (∃!𝑧(𝑧𝑧 / 𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ ∃!𝑦(𝑦𝐵𝜓))
4211, 41bitri 277 . 2 (∃!𝑥(𝑥𝐴𝜑) ↔ ∃!𝑦(𝑦𝐵𝜓))
43 df-reu 3143 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
44 df-reu 3143 . 2 (∃!𝑦𝐵 𝜓 ↔ ∃!𝑦(𝑦𝐵𝜓))
4542, 43, 443bitr4i 305 1 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wnf 1778  [wsb 2063  wcel 2108  ∃!weu 2647  {cab 2797  wnfc 2959  ∃!wreu 3138  [wsbc 3770  csb 3881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-13 2384  ax-ext 2791
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-reu 3143  df-sbc 3771  df-csb 3882
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator