MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvriotavwOLD Structured version   Visualization version   GIF version

Theorem cbvriotavwOLD 7415
Description: Obsolete version of cbvriotavw 7414 as of 30-Sep-2024. (Contributed by NM, 18-Mar-2013.) (Revised by GG, 26-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
cbvriotavwOLD.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvriotavwOLD (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvriotavwOLD
StepHypRef Expression
1 nfv 1913 . 2 𝑦𝜑
2 nfv 1913 . 2 𝑥𝜓
3 cbvriotavwOLD.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvriotaw 7413 1 (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  crio 7403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-ss 3993  df-sn 4649  df-uni 4932  df-iota 6525  df-riota 7404
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator