MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvriotavwOLD Structured version   Visualization version   GIF version

Theorem cbvriotavwOLD 7181
Description: Obsolete version of cbvriotavw 7180 as of 30-Sep-2024. (Contributed by NM, 18-Mar-2013.) (Revised by Gino Giotto, 26-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
cbvriotavwOLD.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvriotavwOLD (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvriotavwOLD
StepHypRef Expression
1 nfv 1922 . 2 𝑦𝜑
2 nfv 1922 . 2 𝑥𝜓
3 cbvriotavwOLD.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvriotaw 7179 1 (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1543  crio 7169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-in 3873  df-ss 3883  df-sn 4542  df-uni 4820  df-iota 6338  df-riota 7170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator