![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvriotavw | Structured version Visualization version GIF version |
Description: Change bound variable in a restricted description binder. Version of cbvriotav 7419 with a disjoint variable condition, which requires fewer axioms . (Contributed by NM, 18-Mar-2013.) (Revised by GG, 30-Sep-2024.) |
Ref | Expression |
---|---|
cbvriotavw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvriotavw | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2827 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
2 | cbvriotavw.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | anbi12d 631 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
4 | 3 | cbviotavw 6533 | . 2 ⊢ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
5 | df-riota 7404 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
6 | df-riota 7404 | . 2 ⊢ (℩𝑦 ∈ 𝐴 𝜓) = (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | |
7 | 4, 5, 6 | 3eqtr4i 2778 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ℩cio 6523 ℩crio 7403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-uni 4932 df-iota 6525 df-riota 7404 |
This theorem is referenced by: ordtypecbv 9586 fin23lem27 10397 zorn2g 10572 nosupcbv 27765 noinfcbv 27780 uspgredg2v 29259 usgredg2v 29262 cnlnadji 32108 nmopadjlei 32120 cvmliftlem15 35266 cvmliftiota 35269 cvmlift2 35284 cvmlift3lem7 35293 cvmlift3 35296 weiunlem2 36429 lshpkrlem3 39068 cdleme40v 40426 lcfl7N 41458 lcf1o 41508 lcfrlem39 41538 hdmap1cbv 41759 wessf1ornlem 45092 fourierdlem103 46130 fourierdlem104 46131 |
Copyright terms: Public domain | W3C validator |