Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvriotavw | Structured version Visualization version GIF version |
Description: Change bound variable in a restricted description binder. Version of cbvriotav 7122 with a disjoint variable condition, which does not require ax-13 2379. (Contributed by NM, 18-Mar-2013.) (Revised by Gino Giotto, 26-Jan-2024.) |
Ref | Expression |
---|---|
cbvriotavw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvriotavw | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1915 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1915 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | cbvriotavw.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvriotaw 7117 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1538 ℩crio 7107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3865 df-ss 3875 df-sn 4523 df-uni 4799 df-iota 6294 df-riota 7108 |
This theorem is referenced by: ordtypecbv 9014 fin23lem27 9788 zorn2g 9963 uspgredg2v 27113 usgredg2v 27116 cnlnadji 29958 nmopadjlei 29970 cvmliftlem15 32776 cvmliftiota 32779 cvmlift2 32794 cvmlift3lem7 32803 cvmlift3 32806 nosupcbv 33490 noinfcbv 33505 lshpkrlem3 36710 cdleme40v 38067 lcfl7N 39099 lcf1o 39149 lcfrlem39 39179 hdmap1cbv 39400 wessf1ornlem 42203 fourierdlem103 43239 fourierdlem104 43240 |
Copyright terms: Public domain | W3C validator |