| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvriotavw | Structured version Visualization version GIF version | ||
| Description: Change bound variable in a restricted description binder. Version of cbvriotav 7340 with a disjoint variable condition, which requires fewer axioms . (Contributed by NM, 18-Mar-2013.) (Revised by GG, 30-Sep-2024.) |
| Ref | Expression |
|---|---|
| cbvriotavw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvriotavw | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2811 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 2 | cbvriotavw.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
| 4 | 3 | cbviotavw 6460 | . 2 ⊢ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
| 5 | df-riota 7326 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | df-riota 7326 | . 2 ⊢ (℩𝑦 ∈ 𝐴 𝜓) = (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | |
| 7 | 4, 5, 6 | 3eqtr4i 2762 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ℩cio 6450 ℩crio 7325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-uni 4868 df-iota 6452 df-riota 7326 |
| This theorem is referenced by: ordtypecbv 9446 fin23lem27 10257 zorn2g 10432 nosupcbv 27647 noinfcbv 27662 uspgredg2v 29204 usgredg2v 29207 cnlnadji 32055 nmopadjlei 32067 cvmliftlem15 35278 cvmliftiota 35281 cvmlift2 35296 cvmlift3lem7 35305 cvmlift3 35308 weiunlem2 36444 lshpkrlem3 39098 cdleme40v 40456 lcfl7N 41488 lcf1o 41538 lcfrlem39 41568 hdmap1cbv 41789 wessf1ornlem 45172 fourierdlem103 46200 fourierdlem104 46201 |
| Copyright terms: Public domain | W3C validator |