MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvriotavw Structured version   Visualization version   GIF version

Theorem cbvriotavw 7357
Description: Change bound variable in a restricted description binder. Version of cbvriotav 7361 with a disjoint variable condition, which requires fewer axioms . (Contributed by NM, 18-Mar-2013.) (Revised by GG, 30-Sep-2024.)
Hypothesis
Ref Expression
cbvriotavw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvriotavw (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvriotavw
StepHypRef Expression
1 eleq1w 2812 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
2 cbvriotavw.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2anbi12d 632 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
43cbviotavw 6475 . 2 (℩𝑥(𝑥𝐴𝜑)) = (℩𝑦(𝑦𝐴𝜓))
5 df-riota 7347 . 2 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
6 df-riota 7347 . 2 (𝑦𝐴 𝜓) = (℩𝑦(𝑦𝐴𝜓))
74, 5, 63eqtr4i 2763 1 (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cio 6465  crio 7346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-ss 3934  df-uni 4875  df-iota 6467  df-riota 7347
This theorem is referenced by:  ordtypecbv  9477  fin23lem27  10288  zorn2g  10463  nosupcbv  27621  noinfcbv  27636  uspgredg2v  29158  usgredg2v  29161  cnlnadji  32012  nmopadjlei  32024  cvmliftlem15  35292  cvmliftiota  35295  cvmlift2  35310  cvmlift3lem7  35319  cvmlift3  35322  weiunlem2  36458  lshpkrlem3  39112  cdleme40v  40470  lcfl7N  41502  lcf1o  41552  lcfrlem39  41582  hdmap1cbv  41803  wessf1ornlem  45186  fourierdlem103  46214  fourierdlem104  46215
  Copyright terms: Public domain W3C validator