MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvriotavw Structured version   Visualization version   GIF version

Theorem cbvriotavw 7336
Description: Change bound variable in a restricted description binder. Version of cbvriotav 7340 with a disjoint variable condition, which requires fewer axioms . (Contributed by NM, 18-Mar-2013.) (Revised by GG, 30-Sep-2024.)
Hypothesis
Ref Expression
cbvriotavw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvriotavw (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvriotavw
StepHypRef Expression
1 eleq1w 2811 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
2 cbvriotavw.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2anbi12d 632 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
43cbviotavw 6460 . 2 (℩𝑥(𝑥𝐴𝜑)) = (℩𝑦(𝑦𝐴𝜓))
5 df-riota 7326 . 2 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
6 df-riota 7326 . 2 (𝑦𝐴 𝜓) = (℩𝑦(𝑦𝐴𝜓))
74, 5, 63eqtr4i 2762 1 (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cio 6450  crio 7325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-ss 3928  df-uni 4868  df-iota 6452  df-riota 7326
This theorem is referenced by:  ordtypecbv  9446  fin23lem27  10257  zorn2g  10432  nosupcbv  27647  noinfcbv  27662  uspgredg2v  29204  usgredg2v  29207  cnlnadji  32055  nmopadjlei  32067  cvmliftlem15  35278  cvmliftiota  35281  cvmlift2  35296  cvmlift3lem7  35305  cvmlift3  35308  weiunlem2  36444  lshpkrlem3  39098  cdleme40v  40456  lcfl7N  41488  lcf1o  41538  lcfrlem39  41568  hdmap1cbv  41789  wessf1ornlem  45172  fourierdlem103  46200  fourierdlem104  46201
  Copyright terms: Public domain W3C validator