| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvriotavw | Structured version Visualization version GIF version | ||
| Description: Change bound variable in a restricted description binder. Version of cbvriotav 7361 with a disjoint variable condition, which requires fewer axioms . (Contributed by NM, 18-Mar-2013.) (Revised by GG, 30-Sep-2024.) |
| Ref | Expression |
|---|---|
| cbvriotavw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvriotavw | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2812 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 2 | cbvriotavw.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
| 4 | 3 | cbviotavw 6475 | . 2 ⊢ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
| 5 | df-riota 7347 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | df-riota 7347 | . 2 ⊢ (℩𝑦 ∈ 𝐴 𝜓) = (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | |
| 7 | 4, 5, 6 | 3eqtr4i 2763 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ℩cio 6465 ℩crio 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-uni 4875 df-iota 6467 df-riota 7347 |
| This theorem is referenced by: ordtypecbv 9477 fin23lem27 10288 zorn2g 10463 nosupcbv 27621 noinfcbv 27636 uspgredg2v 29158 usgredg2v 29161 cnlnadji 32012 nmopadjlei 32024 cvmliftlem15 35292 cvmliftiota 35295 cvmlift2 35310 cvmlift3lem7 35319 cvmlift3 35322 weiunlem2 36458 lshpkrlem3 39112 cdleme40v 40470 lcfl7N 41502 lcf1o 41552 lcfrlem39 41582 hdmap1cbv 41803 wessf1ornlem 45186 fourierdlem103 46214 fourierdlem104 46215 |
| Copyright terms: Public domain | W3C validator |