| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfriotad | Structured version Visualization version GIF version | ||
| Description: Deduction version of nfriota 7379. Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker nfriotadw 7375 when possible. (Contributed by NM, 18-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfriotad.1 | ⊢ Ⅎ𝑦𝜑 |
| nfriotad.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| nfriotad.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Ref | Expression |
|---|---|
| nfriotad | ⊢ (𝜑 → Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-riota 7367 | . 2 ⊢ (℩𝑦 ∈ 𝐴 𝜓) = (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | |
| 2 | nfriotad.1 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfnae 2439 | . . . . . 6 ⊢ Ⅎ𝑦 ¬ ∀𝑥 𝑥 = 𝑦 | |
| 4 | 2, 3 | nfan 1899 | . . . . 5 ⊢ Ⅎ𝑦(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) |
| 5 | nfcvf 2926 | . . . . . . . 8 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) | |
| 6 | 5 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝑦) |
| 7 | nfriotad.3 | . . . . . . . 8 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝐴) |
| 9 | 6, 8 | nfeld 2911 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 10 | nfriotad.2 | . . . . . . 7 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) |
| 12 | 9, 11 | nfand 1897 | . . . . 5 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜓)) |
| 13 | 4, 12 | nfiotad 6494 | . . . 4 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓))) |
| 14 | 13 | ex 412 | . . 3 ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥(℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)))) |
| 15 | nfiota1 6491 | . . . 4 ⊢ Ⅎ𝑦(℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | |
| 16 | eqidd 2737 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) = (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓))) | |
| 17 | 16 | drnfc1 2919 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥(℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) ↔ Ⅎ𝑦(℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)))) |
| 18 | 15, 17 | mpbiri 258 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥(℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓))) |
| 19 | 14, 18 | pm2.61d2 181 | . 2 ⊢ (𝜑 → Ⅎ𝑥(℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓))) |
| 20 | 1, 19 | nfcxfrd 2898 | 1 ⊢ (𝜑 → Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2884 ℩cio 6487 ℩crio 7366 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2377 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-v 3466 df-ss 3948 df-sn 4607 df-uni 4889 df-iota 6489 df-riota 7367 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |