MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfriotad Structured version   Visualization version   GIF version

Theorem nfriotad 7378
Description: Deduction version of nfriota 7379. Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker nfriotadw 7375 when possible. (Contributed by NM, 18-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfriotad.1 𝑦𝜑
nfriotad.2 (𝜑 → Ⅎ𝑥𝜓)
nfriotad.3 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfriotad (𝜑𝑥(𝑦𝐴 𝜓))

Proof of Theorem nfriotad
StepHypRef Expression
1 df-riota 7367 . 2 (𝑦𝐴 𝜓) = (℩𝑦(𝑦𝐴𝜓))
2 nfriotad.1 . . . . . 6 𝑦𝜑
3 nfnae 2439 . . . . . 6 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
42, 3nfan 1899 . . . . 5 𝑦(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦)
5 nfcvf 2926 . . . . . . . 8 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
65adantl 481 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥𝑦)
7 nfriotad.3 . . . . . . . 8 (𝜑𝑥𝐴)
87adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥𝐴)
96, 8nfeld 2911 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑦𝐴)
10 nfriotad.2 . . . . . . 7 (𝜑 → Ⅎ𝑥𝜓)
1110adantr 480 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
129, 11nfand 1897 . . . . 5 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝑦𝐴𝜓))
134, 12nfiotad 6494 . . . 4 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥(℩𝑦(𝑦𝐴𝜓)))
1413ex 412 . . 3 (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦𝑥(℩𝑦(𝑦𝐴𝜓))))
15 nfiota1 6491 . . . 4 𝑦(℩𝑦(𝑦𝐴𝜓))
16 eqidd 2737 . . . . 5 (∀𝑥 𝑥 = 𝑦 → (℩𝑦(𝑦𝐴𝜓)) = (℩𝑦(𝑦𝐴𝜓)))
1716drnfc1 2919 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝑥(℩𝑦(𝑦𝐴𝜓)) ↔ 𝑦(℩𝑦(𝑦𝐴𝜓))))
1815, 17mpbiri 258 . . 3 (∀𝑥 𝑥 = 𝑦𝑥(℩𝑦(𝑦𝐴𝜓)))
1914, 18pm2.61d2 181 . 2 (𝜑𝑥(℩𝑦(𝑦𝐴𝜓)))
201, 19nfcxfrd 2898 1 (𝜑𝑥(𝑦𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1538  wnf 1783  wcel 2109  wnfc 2884  cio 6487  crio 7366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-13 2377  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-v 3466  df-ss 3948  df-sn 4607  df-uni 4889  df-iota 6489  df-riota 7367
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator